线性优化方法,一阶二阶梯度法,高斯牛顿法,列文伯特-马夸尔特法
1.一阶二阶梯度法
求解的最直观方法就是将目标函数(线性优化最常见的那种目标函数,下面式子中左边那个)在x附近进行泰勒展开
其中J就是目标函数||f(x)||^2关于x的导数(雅克比矩阵),H则是二阶导数(海森Hessian矩阵).。
如果这个式子只保留一阶梯度,然后对右边的式子对Δx求导得导数等于J(x),这意味着当Δx = J(x)的时候,这个函数最大。那么如果我们想要这个函数最小的...
原创
2018-04-04 10:55:53 ·
6839 阅读 ·
0 评论