零空间
满足Ax = 0的所有x的集合为矩阵A的零空间
也就是齐次方程Ax = 0的全体解的集合
m * n矩阵A的零空间是Rn的一个子空间
我们考虑一个3 * 4 的矩阵
如果要是它有定义,我们需要的一个向量必须有四个数(类似线性方程组,x1,x2,x3,x4),所以NulA 是 R4 的一个子空间
列空间
与零空间不同,列空间是可以由向量的线性组合显式定义
零空间是由矩阵A的列的所有线性组合组成的集合,即A = {a1 , a2 … an },Col A = Span{a1 , a2 … an}
m * n 矩阵A的列空间是Rm的一个子空间
矩阵A的每一列都有m个数,所以它是Rm的一个子空间