系统简介
本文主要研究对于标枪最终投掷距离的初始的条件的影响,例如出手的角度、出手的速度等。而空气动力学的研究表明,单纯增加标枪投掷的初始速度,获得的成效并不能令人满意。这时,就引入了初始攻角这个概念。同时,还要考虑到在标枪的飞行过程中所受到的空气阻力。对这些回产生影响的因素之间的关系进行简化,使用这些参数建立起标枪的飞行轨迹模型。最后,对于这些影响最终投掷距离的参数的相对重要性进行合理的总结和分析。最终得出,标枪初始的速度和出手的角度两种参数的影响较大,其中在出手角度为41°时达到最大值,而初始攻角的影响相对较小,在18°时达到最大值。其他的参数造成的影响几乎可以忽略不计。
关键词 标枪 参数 空气动力学 相对重要性
引言
标枪,作为一种中小型的投掷工具,在旧石器时代又被称作“投枪”、“投矛”、“短矛”等。在旧石器时代,标枪曾有过一段时间被当作捕猎所使用的工具。在我国历史长河流传下来的体育运动中,投掷标枪是一项历史较为悠久的田径比赛项目。这项运动对运动参赛者的手臂以及身体各处的核心力量的要求非常严格。当然,如果运动员想要在这种标枪运动中获得令人满意的成绩,光是拥有特别强大的身体素质和核心力量,也还是不够的。还需要搭配严谨科学的数学模型分析来得出最佳的投掷方案。同时,每位标枪投掷的参赛选手在正式比赛当天的比赛状态也是取得优良成绩的重要影响因素。然而,就事实而言,比赛状态的好坏是由多种因素所影响改变的,并不是我们想要调节就可以调节成功的,其中涉及到的方面太多,哪怕经过精密的分析也难以掌握。所以,在这种情况下,标枪运动员们的投掷技术就成了如何在标枪投掷比赛中获胜的至关重要的环节。本文尝试运用多元回归建立模型得出标枪的运动规律,再结合空气动力学建立标枪的运动轨迹方程组,结合数据得出最终解。
1.问题的提出
问题一详情:已知,在某场进行的标枪比赛中,24位标枪运动员使用的均为同一型号的标枪。同时提供了24位运动员的出手时的速度,出手的角度,初始攻角以及最终的投掷远近的数据。在题目提供的数据上进行研究,结合题目,创建适宜的数学模型,最终得出这种型号的标枪在空气中飞行时的运动规律。
问题二详情:标枪的参数与问题一相同,假设出手瞬间运动员投掷标枪的初始俯仰角速度为0,同时,忽略风速对于投掷距离的影响。通过研究,分析标枪的出手的速度、初始攻角以及出手的角度,建立出标枪在空中飞行的数学模型。
问题三详情:在问题二的基础上,加入风向对标枪飞行产生的影响。假设风向既有顺风,也有逆风,顺风时的风速为3m/s、6m/s以及9m/s,而逆风时的风速也和顺风相同。某位运动员在标枪出手瞬间的速度是31.70m/s。结合以上条件,建立合适的标枪飞行轨迹的数学模型,计算出能使最终标枪的投掷距离最大的初始的俯仰角速度、初始的攻角和出手时的角度。
问题四详情:研究标枪出手时的角度、初始的攻角、初始的俯仰角速度,同时考虑风速,分析这些参数对标枪最终投掷的距离造成的影响,并得出这些参数间的相对重要性。
2.模型的假设
(1)假设本文研究的标枪的基本参数符合《中华人民共和国国家标准:标枪(GB/T 22765-2008)》中成年男子比赛标枪的标准。
(2)假设标枪是一个质量分布均匀的物体,重心位于形心前10cm。
(3)假设标枪是一个细长旋转体,即垂直于标枪长轴的横截面都是圆。
(4)假设标枪在空中滑翔时不受气流温度、湿度等气象条件的影响。
(5)假设标枪的偏航角为。
(6)假设相对气流方向与水平方向平行。
3.符号说明
表1 模型符号及定义说明
符号 说明
出手角(标枪出手速度方向与水平地面的夹角)
初始攻角(标枪投掷出手时,标枪长轴与标枪出手速度方向的夹角)
持枪角(标枪长轴与水平地面的夹角),
空气密度,
初始俯仰角速度
标枪表面积
出手高度
阻力
升力
阻力系数
升力系数
出手速度
物体和气流的相对速度风向的切向分量
物体和气流的相对速度风向的法向分量
风速
转动惯量
附录
Matlab 代码
问题一
x=[31.5 30.1 29.9 29.3 29.1 29.1 28.9 28.3 28.8 29.2 28.9 28.3 26.7 25.1 24.9 25.8 24.9 24.9 24.9 23.8 23.4 24.1 24.6 24.4];
y=[33 34 35 36 31 35 35 32 33 36 35 37 28 35 34 30 34 35 33 34 37 36 28 30];
z=[4 1 -6 -4 -4 -4 -2 3 4 0 -7 -10 0 -1 8 1 4 6 2 4 4 5 18 6];
w=[89.58 86.3 86.08 83.8 82.04 81.06 81 80.76 79.58 79.14 78.76 78.16 67.56 65.22 65.16 65.04 63.74 62.32 60.8 59.82 59.1 58.84 56.5 55.56];
t=[x',y',z']; rstool(t,w,'quadratic');
fw=beta(1)+beta(2)*x+beta(3)*y+beta(4)*z+beta(5)*x*y+beta(6)*y*z+beta(7)*z*x+beta(8)*x^2+beta(9)*y^2+beta(10)*z^2;
问题二
第1问
function [far]=fly(V,alpha,beta) t=0;
alpha=30;
beta=6;
gamma=alpha+beta;
dt=0.01;
d=0.1;
I=0.2628;
m=0.8;
g=9.8;
x=0;
y=2;
V=24.4;
Vx=V*cosd(alpha);
Vy=V*sind(alpha);
w=0;
rho=1.184;
Cf=0.12;
Cp=1.2;
Sb=0.21725*0.5*sind(gamma-alpha);
Sj=6.42e-2;
figure(1);
holdon; //在一张图上重复画
while(y+0.9975*sind(gamma)>=0) t=t+dt;
Vp=V*sind(gamma-alpha);
Vt=V*cosd(gamma-alpha);
Sb=0.21725*0.5*sind(gamma-alpha);
Ft=0.5*rho*Cf*Vt^2*Sb;
Fp=0.5*rho*Cp*Vp^2*Sj;
gamma=gamma+w*180/pi*dt;
w=w-Fp*d/I*dt;
ax=(-Fp*sind(gamma)-Ft*cosd(gamma))/m;
ay=(-m*g+Fp*cosd(gamma)-Ft*sind(gamma))/m;
Vx=ax*dt+Vx;
Vy=ay*dt+Vy;
V=sqrt(Vx^2+Vy^2);
alpha=atand(Vy/Vx);
x=x+Vx*dt;
y=y+Vy*dt;
far=x+0.9975*cosd(gamma);
if(far<110)
plot(x,y,'.b');
end
end
Holdoff
far=fly(29.7,36.6,-0.9);
第2问
alpha=28;
beta=-10;
farest=0;
for i=28:37
for j=-10:18
far=fly(30,i,j);
if farest<far
farest=far;
alpha=i;
beta=j;
end
end
end
问题三
function [far]=fly(V,alpha,beta)
t=0;
%alpha=30;
%beta=6;
gamma=alpha+beta;
dt=0.01;
d=0.1;
I=0.2628;
m=0.8;
g=9.8;
x=0;
y=2;
%V=24.4;
Vx=V*cosd(alpha);
Vy=V*sind(alpha);
w=0;
rho=1.184;
Cf=0.12;
Cp=1.2;
Sb=0.21725*0.5*sind(gamma-alpha);
Sj=6.42e-2;
figure(1);
hold on;
while(y+0.9975*sind(gamma)>=0)
t=t+0.01;
Vp=V*sind(gamma-alpha);%垂直 分量
Vt=-6*sind(gamma)-V*cosd(gamma-alpha);%相对 分量
Sb=0.21725*0.5*sind(gamma-alpha);
Ft=0.5*rho*Cf*Vt^2*Sb; Fp=0.5*rho*Cp*Vp^2*Sj;
gamma=gamma+w*180/pi*dt;
w=w-Fp*d/I*dt;
ax=(-Fp*sind(gamma)-Ft*cosd(gamma))/m;
ay=(-m*g+Fp*cosd(gamma)-Ft*sind(gamma))/m;
Vx=ax*dt+Vx; Vy=ay*dt+Vy; V=sqrt(Vx^2+Vy^2);
alpha=atand(Vy/Vx); x=x+Vx*dt; y=y+Vy*dt;
far=x+0.9975*cosd(gamma);
if(far<110)
plot(x,y,'.b');
end
end
hold off
alpha=30;
beta=-8;
w0=-2;
farest=0;
for i=30:37
for j=-8:5
for k=-2:5
far=fly4(31.7,3,i,j,k);
if farest<far
farest=far;
alpha=i;
beta=j;
w0=k;
end
end
end
end
问题四
function [far]=flyw(cw)
V=30;
alpha=37;
beta=16;
t=0;
%alpha=30;
%beta=6;
gamma=alpha+beta;
dt=0.01;
d=0.1;
I=0.2628;
m=0.8;
g=9.8;
x=0;
y=2;
%V=24.4;
Vx=V*cosd(alpha);
Vy=V*sind(alpha);
w=cw;
rho=1.184;
Cf=0.12;
Cp=1.2;
Sb=0.21725*0.5*sind(gamma-alpha);
Sj=6.42e-2;
figure(1);
hold on;
while(y+0.9975*sind(gamma)>=0)
t=t+0.01;
Vp=V*sind(gamma-alpha)-6*sind(gamma);%垂直 分量
Vt=V*cosd(gamma-alpha)+6*cosd(gamma);%相对 分量
Sb=0.21725*0.5*sind(gamma-alpha);
Ft=0.5*rho*Cf*Vt^2*Sb;
Fp=0.5*rho*Cp*Vp^2*Sj;
4.问题分析
空气动力学通常以流体运动的速度范围400km/h将运动区分为低速和高速。标枪可以看作是旋转体,可以将其看作为一种在超低速范围的飞行器,质量重于空气。如果想要获得飞行过程所必须的动力,就必须与空气形成相对运动。所以,我们需要考虑空气的摩擦阻力和压强差阻力。
标枪投掷距离受多种因素影响(见图1),主要有(1)标枪在运动员出手时的速度、出手的角度、初始的攻角以及初始的俯仰角速度等。(2)标枪本体的参数。(3)比赛当天的环境。如当天的风速,空气的密度以及空气的粘度等。
图1 影响最终距离参数的结构图
4.1受力分析
标枪在空气中运动受到自身的重力、摩擦产生的阻力、压强差产生的阻力。(见图2)
图2 标枪的受力分析图
4.3问题分析
对问题一,建立多元非线性回归模型,给出投掷距离与出手速度、出手角、初始攻角这三个因素之间的关系。
对问题二,标枪在空中飞行时,由于空气粘度和标枪上下表面的气流流速不同,标枪受到空气的升力和压差阻力。通过分析标枪投掷的距离与受到的重力、升力及阻力的关系,根据物理意义,建立模型。
对问题三,在问题二的基础上,考虑到风速和风向的影响,对物体和空气的相对速度重新进行了计算,结合标枪投掷的距离与受到的重力、升力及阻力的关系,根据物理意义,建立模型。
对问题四,考虑了单一因素改变时对最终的投掷距离产生的影响。采用控制变量法,依次对影响标枪最终投掷的距离的参数进行改变,先改变出手时的角度,之后改变初始的攻角最后对初始的俯仰角速度也进行改变,通过之前建立的模型得出最终投掷的距离,并分析各个不同参数之间对最终的投掷距离的影响的相对重要性。
5.模型的建立与求解
5.1问题一数学模型的建立与求解
多元非线性回归模型,可以解决多种自变量影响因变量的问题。以投掷距离作为因变量,影响因变量的3个因素出手速度、出手角、初始攻角作为自变量,建立一个三元二次多项式回归模型
(1)
代入24名运动员的实测数据得,,,,,,,,,。回归方程图像见图3。
图3 回归方程图像
5.2问题二数学模型的建立与求解
物体在气体中运动时,气流因在物体四周流动产生了切向应力以及压强大小的差异,从而产生了空气阻力。这两种因素产生的空气阻力是不同的。因切向应力产生的空气阻力称为摩擦阻力,因压强差产生的阻力称为压差阻力。同时,压差阻力的大小很大程度上决定于物体的形状。当物体发生形变时,空气流过物体的表面。这时,因为有空气粘度以及物体自身形状的双重影响,所以空气气流的运动速度在经过物体前后一定是不一样的,从而导致压强发生了变化。而压强差的最终影响就是会产生阻力,我们将由压强差产生的阻力称为压差阻力。物体运动产生的压差阻力的计算式为
(2)
物体在空气中运动时会受到升力的影响,这是一个对物体产生向上推动的力。而运动员投掷时会产生攻角,气流在流经有初始的攻角的物体时,会导致在物体的上表面与下表面,空气流动的速度并不相同,从而在物体的上下表面形成了压差,产生了一个向上的力,而影响升力大小的因素有很多,例如物体与空气的相对运动速度,物体自身的表面积,空气的密度以及初始的攻角的大小,它的计算式为
(3)
在此模型中,下一时刻的变量值是由前一时刻的结束值决定的,即在此循环下,由每一个变量值推及到下一时刻。也就是建立起两个或多个相邻的时段间的变量之间的运算过程以及他们变化的规律。而标枪出手后,在飞行过程中,持枪角和初始俯仰角在每一时刻都在不断发生变化,即
设投掷标枪时运动员出手时刻的速度是29.70m/s、出手时刻角度为 36.6°、初始投掷的攻角是−0.9°,估算出标枪的投掷距离。计算得,d=85.28m,运动轨迹如图4所示。
图4 标枪运动轨迹示意图
结论
经过上述几个问题的系统研究,我们得出,想要将标枪的投掷距离尽可能的延长,不光需要标枪运动员本身强大的身体素质,还需要经过科学严谨的分析得出在各种因素影响下能够达到最远的客观条件。但是,由于各种参数的叠加产生的影响具有很强的不确定性,所以经过分析,对最终投掷的距离产生的影响较大的是标枪出手时的速度,出手角度对最终投掷距离的影响略小于出手速度的影响,这两个因素应当着重考虑。初始攻角对最终投掷距离的影响相对来说很小,而初始攻角和风速对最终投掷距离的影响几乎可以忽略不记。