前言
本文是智能化军事系列文章第二章——军事AI应用场景。
系列文章链接:
- 智能化军事【一】智能赋能OODA环
- 智能化军事【二】军事AI应用场景
- 智能化军事【三】军事AI应用痛点及解决方案
- 智能化军事【四】AI芯片在智能化军事中的应用模式
- 智能化军事【五】精确制导武器智能化实现
- 智能化军事【六】国外研究进展
军事AI应用场景
智能导引
原理
现代战场环境复杂多变,单一传感器可能无法提供足够的信息支持。多模融合智能导引是指利用多种传感器(如雷达、红外、光学等)的数据进行综合分析,以实现更加精准的导航和目标定位。AI技术可以通过学习算法对这些不同来源的数据进行处理,从而提高导弹的命中精度和适应复杂环境的能力。
应用方式
- D载传感器就像装进战场的“眼睛”,借助空天一体联合作战体系融合天、地、海等多维度态势信息,对战场态势做到“心中有数”。在飞行过程中,导弹可利用多模融合智能导引系统,根据不同传感器获取的目标信息,自动选择最优的导引模式和参数。
- 环境感知:AI能够实时分析来自各种传感器的数据,包括地形、天气条件和其他可能影响飞行路径的因素,确保导弹可以避开障碍物并选择最优路线。
- 自适应调整:基于深度学习的模型可以让导弹根据实际情况动态调整飞行参数,比如速度、高度和方向,以应对突发情况或变化的目标位置。
- 抗干扰能力:通过机器学习算法,导弹可以识别并过滤掉敌方发出的电子干扰信号,保持稳定的通信和控制连接。
- 例如,在远距离时可依靠卫星定位和雷达数据进行惯性导航,接近目标时则切换到红外或光学传感器进行精确制导,提高命中精度。
解决方案
不依赖卫星的自主导航
“不依赖卫星的自主导航”将发展与任意导航传感器和敏感器组合方案相关的快速集成和重新配置的架构、抽象方法及滤波算法,降低系统集成成本,为用户提供无卫星导航服务条件下的高精度定位、导航与授时能力,满足不断变化的任务需求与环境变化的要求。
多源异构信息一体化智能处理技术
不同体制的导弹导引头所获取的外部信息具有不同的形式与特性,其中存在一维信号,如雷达高分辨距离像(HRRP)等,也存在二维信号,如合成孔径雷达(SAR)图像、可见光与红外等光电图像。导引头主要借助上述多种不同源、不同结构的信号完成对目标的准确检测与分类识别。在经典信号与信息处理模式下,要完成目标检测、识别等任务需要针对不同信号专门设计不同的信号处理流程与方法,成本高、开发效率低,并且对不同信号间的信息融合效率也比较低。
深度学习技术借助复杂网络结构模型,具备对各类复杂任务的高性能表达学习能力,对于目标检测、识别问题可实现从数据到结果的端到端的学习、映射,在统计意义上对噪声更加鲁棒,并且在大规模数据支撑下,可开展复杂、多任务联合学习,通过挖掘任务间的相关性,提高数据利用率及系统性能。在深度学习过程中,通过网络结构的拓扑变化,采用卷积神经网络(CNN)、循环神经网络(RNN)等深度学习模型能够为上述多源异构信号提供统一的处理框架,同时,可实现对不同目标检测、识别任务多源数据的联合学习。多源异构信息统一处理可提高对目标的检测、识别性能,简化信息处理系统设计,同时能够为多模复合导引头、多弹协同攻击等场景下的信号处理提供快捷、高性能解决方案。
健康管理与容错控制
飞航导弹自身能够根据飞行状态和感知到的外部信息,自动检测、推理判断出运行过程中的已经发生的或潜在故障,并主动调整控制器,解决在故障状态下的稳定飞行和后续任务执行策略问题,实现故障容错。其容错层级分为弹上分系统级容错、导弹个体级容错和群体容错。容错执行的结果分为增强置信度、降额使用或任务改变。
目标识别跟踪
原理
在复杂战场环境中,目标可能采用多种伪装和干扰手段。多光谱目标识别追踪指的是使用多个频段(可见光、红外线、紫外线等)的图像信息来检测、分类和跟踪目标。利用多光谱成像技术获取目标的丰富光谱信息,再借助AI算法对这些信息进行分析和处理,从而实现对目标的准确识别、分类和持续追踪,即使在复杂背景和干扰条件下也能有效区分目标与非目标物体。
应用方式
- 导弹虽在一线,但并不是“孤身奋战”,庞大的数据库和智能算法模型是其强大后盾,支撑导弹自主开展精确目标定位,快速进行目标识别、敌我识别、威胁识别、障碍物识别等运算,用最有效的方式打击目标的高价值部位,准确预测威胁并自动规避。
- 目标检测与分类:利用卷积神经网络(CNN)等深度学习方法,可以从大量数据中快速准确地识别出特定类型的目标,并对其进行分类。在面对敌方干扰或伪装时,导弹借助强化学习与训练,能及时感知并灵敏抗干扰,实现干扰对抗全流程智能化。
- 持续跟踪:导弹搭载的多光谱传感器收集目标区域的图像数据后,弹载AI系统能够快速识别出目标的特征和位置,并在飞行过程中持续跟踪目标的运动轨迹。即使目标移动或改变形态,AI也能通过特征点匹配和轨迹预测等手段维持对目标的锁定。
- 全天候操作:多光谱成像允许导弹在白天黑夜、晴天雨天等各种环境下都能有效工作,提高了任务的成功率。
- 例如,对于伪装的军事目标或在复杂地形中的目标,多光谱目标识别追踪系统可以通过分析不同光谱波段下的反射特性,准确地将目标从背景中分离出来,确保导弹能够始终锁定并追踪目标。
解决方案
感兴趣目标智能分类与识别技术
对导弹武器导引头目标识别而言,不同的战术目的对应不同的目标识别问题。精确制导目标识别问题按照待识别目标种类可分为:地面目标(固定建筑、车辆等)识别、海面目标(航母、舰船等)识别、空中目标(飞机、无人飞行器、弹道导弹等)识别等;按照识别处理层级可分为:干扰诱饵辨识(感兴趣目标与人为干扰/诱饵等辨别)、目标身份与属性识别(敌我、军民目标识别等)、目标类型与型号识别(舰船等级、飞机类型等)、目标关键部位选择等。
对于上述复杂多样的导弹精确制导目标识别任务,传统基于规则的自动目标识别系统主要是将专家对问题的理解与解决方法转化为机器能够执行的规则集合。这种智能系统存在的问题主要是其实现过程过分依赖人类专家的经验知识与客观表达能力,比较适合相对简单的分类识别问题,但随着问题复杂度的增加,系统实现难度呈指数级上升,在准确率、实现效率、可扩展性等方面存在瓶颈,难以满足武器装备发展需求。机器学习技术,以仿真、试验等累积的“大数据”为基础,能够在高维特征空间中对分类识别问题进行精细化建模与学习,较基于规则的方法可显著提升识别性能,同时借助高性能计算可获得更高的学习效率,可实现快速的、迭代的模型升级与性能改进。
微弱特征目标智能检测技术
基于图像、雷达信号的目标检测是导弹武器精确制导的经典问题之一。无人飞行器、隐身舰船等微弱特征目标由于其自身几何尺寸较小,或者通过结构材料隐身、辐射屏蔽等措施在可见光、红外、雷达等探测信号中表现不明显。检测过程易受噪声、背景杂波等因素影响,对目标检测提出新的挑战。经典恒虚警概率等检测方法在背景自适应、目标结构尺寸自适应、检测效率、检测性能等方面存在局限性,改进难度较大。
随着隐身、伪装等军事技术的发展,军事目标的生存性大幅提高,同时对精确制导武器的成像末制导提出了更高要求。新一代战机F-22利用外形隐身技术大幅减少红外辐射,并配备有先进的推力矢量控制发动机,对空空导弹的目标截获与快速稳定跟踪提出了更高要求。德国MEKO型护卫舰舰体使用了大量复合材料,并通过冷却废气、屏蔽散热装置等措施,达到了较好的红外隐身性能,这就为反舰导弹红外末制导的目标探测与识别带来了更大的挑战。迷彩技术、遮蔽技术的使用,使得地面目标在光电探测方面呈现出低可探测性,而利用示假技术仿造的假目标,与真实目标具有相同的光电特性,对空地导弹、反坦克导弹等的成像探测与目标识别提出了严峻挑战。
基于深度学习的目标检测方法通过多层网络模型可以从信号中快速发现疑似目标区域,并借助目标鉴别模型准确滤除虚假目标,对目标的位移、旋转、尺度等变化具有很好的鲁棒性,具有高噪声稳定性、高检测概率、高检测效率等优点。当前,R-CNN、YOLO等深度学习检测算法已在PASCAL VOC等大规模常规目标数据集上获得杰出的检测表现,后续必然也将成为导弹武器微弱特征目标检测的一个重要技术发展方向。
干扰对抗策略智能学习技术
从策略角度讲,导弹武器精确制导干扰对抗过程可看作一个“非对称信息博弈”问题。导弹武器需要依据感知到的敌方干扰变化状态,动态做出最优的抗干扰决策与动作,以规避或者降低敌方上一时刻所施加干扰对自身当前精确制导信息感知与处理过程的影响。
干扰类型、体制众多。在干扰释放过程中常会依据场景的变化选择不同的干扰样式、方式或配置,甚至采用多种干扰的复杂组合,对导弹武器精确制导过程产生严重影响。常用的红外点源诱饵弹通过改变干扰释放策略,以不同压制比的多诱饵弹向多方向投放来提高干扰效果;面源型红外诱饵、烟幕装置等,可为飞机、舰船、装甲车辆等目标提供视场遮蔽;伴飞诱饵或拖曳式诱饵,可模拟飞机的运动轨迹;新型诱饵在多光谱特性、能量特性、形状特性和运动特性上更加逼近目标,对抗过程中,对目标形成大面积、长时间的遮蔽,分离后又形成目标与诱饵的混淆;新型的多光谱烟幕装置,可以为舰船、坦克等提供可见光和多波段红外遮蔽;在弹上频谱、能量、计算等资源有限条件下,导弹导引头很难实现同等复杂度和强度的干扰对抗措施,因此更加关注干扰对抗过程的灵活性与智能化。上述“软”杀伤手段,对精确制导武器的自动目标识别技术提出了严峻考验。
此外,激光定向能干扰装置、近程武器防御系统等“硬”杀伤武器的大量应用。激光定向能干扰装置,能够在探测到来袭导弹时向导弹发出高能量激光,使成像导引头致盲或致眩,从而破坏精确制导武器对目标的稳定跟踪造成脱靶;近程武器防御系统能够对来袭导弹等直接实施硬杀伤,对精确制导武器的突防能力带来了更高的挑战。
传统的干扰对抗策略主要是借助专家系统或采用多种抗干扰措施之间的有规律或随机轮换,很难灵活地适应实战环境下瞬息万变的战场态势,也不能快速、有效地应对新的干扰样式。借助强化学习技术可实现导弹武器从导引头信息感知到干扰对抗最优“动作”决策的智能学习与训练,从本质上实现干扰对抗全流程的智能化。强化学习过程本质上是一个对动态场景的连续决策学习过程。强化学习过程中,导引头感知环境状态s,并采取动作a对外部环境施加影响,随后环境随着敌方干扰的变化发生转移变化,并返回与动作a对应的“奖赏”R,然后导引头通过观察转移后的环境状态和返回的奖赏来改进自身的动作策略。强化学习过程在数学上可利用马尔可夫决策过程(Markov Decision Process)进行建模。借助强化学习,导引头最终获得策略函数(Policy)π。该策略函数π就是导引头针对干扰对抗环境经过大量“动作—反馈”学习得到的“最优”抗干扰策略。根据该策略,导引头每感知到新的干扰场景状态s,则根据策略函数计算获得当前时刻最优的抗干扰动作a=π(s)。导引头强化学习抗干扰原理如图所示。此外,如何让导弹导引头能够在“有限”训练数据支撑下实现增量的、外推式的学习与迭代性能提升是未来智能化导弹与导引头设备的必备能力与特征。
基于深度学习的目标识别算法
随着半导体电子技术以及工艺的发展,计算机硬件的算力水平得到飞跃式的提升,在借助两块 GPU 显卡的算力支持下,2012 年,AlexNet 在 ImageNet 图像分类竞赛上实现了远超当时水准的精度以及极低的错误率,使得人们关注到卷积神经网络在图像任务上具有的先天优势。GPU 强大的算力支撑也使得可以设计更加复杂的网络结构,如 VGG16 网络,22 层更深的 GoogLeNet,更宽的 ResNet 系列网络,更加复杂的 DenseNet 网络等,这些模型探索得到的神经网络模型结构、技巧及方法推动了后续计算机视觉领域的进步。但是目标识别与图像分类相比,还需要完成对于目标位置的估计,任务更加复杂多变。目前,基于深度学习的目标识别算法分为有锚点和无锚点两类。其中基于锚点的方法则包括有一阶段(One-stage)目标识别算法和二阶段(Two-stage)目标识别算法,通常来讲一阶段识别算法的精度要逊色于二阶段识别算法,但是往往拥有着更高的识别效率。如图所示,展现了过去二十年来目标识别方法的发展脉络。
近几年来,卷积神经网络在计算机视觉上的优异表现让人们感受到了智能时代的到来。2014 年,Girshick 提出 R-CNN,奠定了二阶段目标识别算法框架,基于候选区建议结合卷积神经网络的框架使 R-CNN 在 PASCAL VOC 数据集上的精度达到 53.7%,目标识别算法得到质的飞跃。不过 R-CNN 的缺点也十分的明显,由于最终需要 SVM 进行分类,无法完成端到端的训练;各个候选区均需进行反复多余的提取特征,导致即使在GPU 加速的情况下运行速度也十分的缓慢;其次,在中间过程中将会产生大量的特征数据,十分消耗物理内存。同年,He 等学者针对 R-CNN 效率低下的问题提出 SPP-Net,可有效地使用同一网络提取不同尺寸图像的特征,避免了大量的中间过程的产生及特征图存储,大大提升了运行效率。从而在 2015 年,Girshick 融合 SPPNet 的思想提出了感兴趣区域池化层,并且基于 softmax 操作提出了可以端到端的二阶段目标识别算法 Fast R-CNN 目标识别算法,减少了大量的区域提取特征的操作,加速了整体的算法运行。2017年,Ren 等学者提出了 Faster R-CNN,提出区域提议网络(RPN),可在 GPU 上搜索备选区,完成端到端设计,并且效率、精度均得到很大提升。在 R-CNN 系列的目标识别算法的改进过程中不难看出,对于算法速度上的提升依然是在于对冗余操作的处理,减少大量的冗余操作,采用更高效的方式对于算法精度的保持、速度的提升是至关重要的,更高效的操作甚至可以有效的提升算法的精度。
一阶段目标识别算法是基于锚点的目标识别方法的另一个分支,如图所示,相较于二阶段的算法,该方向将目标分类和回归统一起来,实现端到端训练,有着更快的识别速度。2016 年,Redmon 等学者提出了 YOLO 目标识别算法,为后续的一阶段目标识别算法提供了完整的架构和思路。同年,Liu 等学者提出了 SSD 目标检测算法,SSD 算法采用卷积结构进行目标的回归和分类,引入多级尺度特征以及不同横纵比的先验框提升了模型精度,在有着高精度的同时有着高效的推理速度。2017 年,Redmon 等学者在YOLO 的基础之上提出 YOLOv2 目标识别算法,通过引入批处理归一化、预选锚框、数据增强及多尺度训练等方法,为后续深度学习算法提供了很多训练技巧。2018 年,YOLO的作者继续对 YOLO 进行着增强,提出了 YOLOv3 目标识别方法,设计了全新的多尺度 Darknet53 网络架构提升模型的特征提取能力。2020 年,Bochkovskiy 等学者继续优化YOLOv4 骨干网络,通过 CSPNet跨连接的思路设计 CSPDarkNet53 骨干网络,有效提升了卷积神经网络特征信息的传递,并在颈部网络引入空间金字塔池化模块(SPP)提升网络感受野,提升模型的识别性能。
目前使用深度学习技术进行目标识别的方法主要有两种,一种是端到端式:直接输入图片,使用端到端网络回归出含有特定目标的概率和目标的具体位置(四个坐标) ;另一种是基于区域的算法,先提取出可能包含物体的区域,再进行边框(Bound Box) 回归,回归出物体在图像中的具体位置。
基于区域的算法一般都包含区域提名(提取候选区域) 、特征提取和分类回归(分类器识别,边框回归)三个步骤,具体顺序与方法根据不同算法变化。总的来说,端到端方法计算量小,识别速度更快,而基于区域的算法应用更广,精度更高,结果更准确。
基于深度学习的目标识别算法大体分为两类:一类是基于候选区域,包括 R-CNN、SPP-NET、Fast R-CNN、Faster R-CNN、R-FCN、MaskR-CNN等,这些算法有一个共同的缺点,那就是这些算法的网络实时性较差,难以满足军事目标识别的实时性需求;另一类是基于回归,包括 YOLO 系列各种识别算法、SSD、FPN、RetinaNet等。基于回归的目标识别算法不仅在识别的实时性方面优于基于候选区域的识别算法,而且在识别准确度方面也优于基于候选区域的识别算法;不仅如此,基于回归的识别算法更加关注小目标物体的检测,所以,基于回归的目标识别算法在军事目标识别领域应用甚广。
精确制导技术
简介
导弹武器精确制导技术是指导弹武器感知外部复杂场景信息,并完成对感兴趣目标的探测、识别与跟踪,导引导弹对目标实现精确打击的技术。精确制导技术对于提高导弹武器装备复杂作战环境下对多目标的打击能力起着重要作用。有两方面关键要素影响导弹武器对目标精确打击的适应性:目标场景信息获取能力与感兴趣目标自动识别能力。
目标场景主要是指导弹武器所面对的战场环境,不仅包括感兴趣目标,还包括大量自然干扰(如地面背景、海面背景、雨雪、岛屿、无关目标等)与人为干扰,导致导弹获取的信号是感兴趣目标、无关目标、干扰、诱饵、杂波等多种信息的混合。复杂场景下,自然杂波与人为干扰会以无意或有意的方式影响、欺骗或阻断导弹导引头对目标信息的获取、处理、识别过程,增加目标识别的技术难度。
感兴趣目标自动识别主要是为导弹武器精确制导目标选择、跟踪提供决策结果,并且按照导弹武器打击需求的不同可分为特定目标检测、类别识别、类型识别、关键部位识别等不同层次。目标识别性能的高低直接影响导弹武器的最终打击效果。
综上所述,从信息处理的角度讲,导弹武器精确制导问题可概括为:对伴有噪声、自然干扰、人为干扰信息的场景信息进行精细处理与分析,结合目标先验知识,按需求给出关于目标的不同层次的状态信息与识别结果。导弹武器精确制导技术是关系导弹武器作战效能与智能化的核心。值得指出的是,精确制导信息处理过程,一方面,由于涉及关于信息的高层分析、理解与归纳推理等操作,机理相对复杂;另一方面,导弹武器对目标识别查全率、查准率等性能有更高要求,因此技术上难度大。
导引头
在导弹精确制导过程中,导弹武器对外部复杂战场环境的感知与信息交互主要是通过弹上导引头设备实现的。导引头作为导弹的核心分系统之一,担负着目标探测、分类识别、干扰对抗等职责,为导弹武器实现目标截获、选择、跟踪、打击提供决策支持。
从工作内容与性质上讲,导弹导引头可看作一类针对特殊应用的智能系统。常见的导引头工作体制包括微波/毫米波制导、可见光/红外制导、多模复合制导等。不同工作体制主要体现在感知、获取外部场景信息的介质、途径不同,对应可得到关于场景与目标不同的物理特性信息。
近年来,随着电子集成、微系统等技术的快速发展,导引头设备的集成度也越来越高,在相同或更小的体积下已经实现极化复合、频段复合、多模复合等多种探测体制的一体化集成设计。导引头复合能力的提高增强了其对复杂战场环境的广域信息感知能力,能够在更高维度的信息空间中实现对目标与场景的更加全面、精细地描述,但同时也对导引头多维度、多属性、大规模信号处理能力、智能化水平等提出了更高的要求。
智能编队
原理
在未来作战中,导弹集群的协同作战将成为趋势。智能编队组网涉及到多个导弹或无人机之间的协作,形成一个高效的作战单元。AI在这里主要用于优化团队行为,确保各个成员之间能够无缝配合完成复杂的军事任务。基于弹载 AI 的智能编队组网技术,使多枚导弹之间能够通过高速数据链进行实时通信和信息共享,实现协同作战。每枚导弹作为一个智能节点,能够根据自身和其他导弹的状态、目标信息等,自主地进行任务分配和战术调整,形成一个有机的作战集群。此外,协同探测和抗干扰能力也得到了提升,即使部分导弹受到干扰或损坏,其他导弹仍能继续执行任务,确保打击效果。
空战对抗实际上是一个多机协同决策控制问题,其中单个飞机的决策涉及到多个维度,既包括机动,还包括各项电子对抗能力,同时己方飞机间需要进行协同配合,以共同完成对抗任务。该问题属于群体智能问题,如何为一个异构集群生成符合期望的较优策略具有重要的应用价值。例如在异构无人机编队执行搜救任务时,如何进行每个无人机的路径分配与管理,如何进行信息同步与配合,均需要进行群体决策;在局部的智能交通灯控制中,如何协调配合所有的交通灯,使得道路的车辆吞吐量更大。
应用方式
- 智能化导弹除了拥有“高智商”外,还具备“高情商”。面对复杂博弈态势,导弹也需“抱团”,提高自身生存力和攻击力。
- 自主规划:每个个体可以根据整体战略目标自行决定最佳行动方案,同时考虑其他成员的位置和状态,避免冲突并最大化集体效能。在作战时,多枚导弹可以根据任务需求和战场态势,自动组成不同的编队构型,如扇形编队、梯队编队等。通过智能编队组网,导弹之间能够相互配合,共同完成搜索、攻击等任务。
- 信息共享:通过建立强大的通信网络,所有参与者都可以即时交换情报,包括各自的状态更新、周围环境的变化以及新的指令。多弹协同作战能克服单枚导弹探测体制局限与性能瓶颈,编织成一张火力网。每枚导弹都是一个高性能感知与决策的智能节点,通过高速数据链弹性动态组网,实现基于信息共享的任务规划、弹道规划、协同探测等功能,共同完成攻击构型调整、协同搜索策略、弹群集体智能决策、目标智能分配等环节,形成智能集群式新质作战能力。
- 灵活响应:当遇到意外状况时,如部分成员受损或丢失联系,剩余成员可以迅速重组队伍,重新分配任务,继续执行原定计划。
- 例如,在面对敌方的防空系统时,导弹集群可以通过协同探测和干扰,分散敌方的防御注意力,提高整体的突防概率和作战效能。
解决方案
弹群攻击智能协同技术
实战情况下,敌方高价值目标通常以编队形式出现,具备较强的体系化综合防御、攻击能力。为提高导弹武器的突防和生存能力以及对敌方目标的有效摧毁能力,导弹武器实施的战术、战略打击也将发展为体系化弹群协同攻击模式。多弹协同攻击可以克服单枚导弹导引头探测体制局限与性能瓶颈,通过弹群中不同体制导引头在不同距离、不同角度下对目标的多条件联合探测,以实现比其中独立个体更优的目标识别、抗干扰能力。
在“弹群”攻击模式下,开展多弹间信息交互与协同处理技术研究,实现群体的分布式智能化协作,以及“弹群集体智慧决策”,是未来导弹武器智能精确制导技术发展的重要方向。在此过程中,每枚导弹,尤其是导弹导引头,都将作为一个高性能信息感知与决策的智能体(Agent),同时多枚导弹导引头智能体能够在高速、高动态环境下依据作战需求智能完成自适应组网、信号级/信息级探测协同、多基(卫星-导弹、预警机-导弹、无人机-导弹等)多源信息融合、最优集体决策等操作,最终实现对目标的有效打击。
协同识别与协同抗干扰能力
依靠协同探测能力,通过将不同装备自行组网,使得各节点在获取多维信息的同时,在某些节点因“软”、“硬”杀伤干扰导致探测性能下降甚至失效时,可通过其他节点获取探测信息,保证打击任务的继续执行。依靠战场环境感知与态势理解能力,实时动态调整协同网络的拓扑结构,使得各节点之间保持最佳的探测、通信与抗干扰性能。在某些节点遭受多种干扰对抗甚至丢失时,能够凭借自主决策能力,重新对网络进行划分,形成多个独立网络,使得集群可以有效应对多维度多方向干扰的同时,具备多任务并行处理能力。
多作战智能体围捕问题
简介
对于围捕任务,作战智能体通常需要根据不同情况进行相应任务分配,制定围捕策略。围捕问题需要考虑目标的状态,围捕作战智能体当前的状态、环境产生的态势信息等,通过多作战智能体的协作最终实现对目标的合围,深度强化学习算法面对围捕问题能够实现端到端的控制,对复杂环境适应能力强,因此在多作战智能体围捕任务中具有广泛的应用前景。
多作战智能体围捕问题围捕过程就是一个决策与博弈的过程,也是多作战智能体群体控制的热点问题。在围捕场景中,多作战智能体之间的协同作战极为重要,不仅需要维持作战智能体之间的联系,也要应对复杂多变的环境。作战智能体涵盖无人地面车辆(UGV)、无人飞行器(UAV)、无人水面舰艇(USV)等。
多作战智能体广泛应用于优化调度、机器人控制、智能驾驶、视觉处理和围捕作战等。现代多作战智能体协同技术的科研灵感主要受自然界动物的集群行为启发,例如鸟群、鱼群和蜂群的群聚现象等,这些群聚现象通过相互合作表现出智能行为特征与多作战智能体系统有着相似的特点。美国国防部高级研究计划局已完成了“进攻性蜂群使能战术”项目的第 3 次和第 4 次野外实验,第 5 轮“蜂群冲刺”聚焦于实物试验台和蜂群战术,如图所示为第五轮“蜂群冲刺”实验,利用具有抗毁性强、成本低、作战效费比高等优势的无人机集群,实施广域分布式多点多向围捕打击,对传统的防御系统提出了极大的挑战。
在多作战智能体的合作围捕中,所有作战智能体的自主性是平等或接近的,作战智能体与作战智能体之间没有特殊的依附关系,但每个作战智能体都有一个共同的目标。各个作战智能体在一个相同目标的前提下互相之间保持一定的位置差,以达成协同的目标。
作为多作战智能体协同技术的一个应用,多作战智能体协同围捕问题是作战智能体领域的一个研究热点,通过作战智能体之间的队形控制,协同攻防完成围捕任务。在军事方面,多作战智能体联合包围策略的研究可以为发现、捕获、攻击和驱逐入侵目标提供新的战术;在自然界中,生物通过蜂群包围和防御敌人,提高了自身的生存能力;多作战智能体联合包围问题的研究为理解生物在蜂群、狩猎等方面的行为提供了思路;在高校方面,研究此课题可以为 Robo Master 比赛中的协同攻防策略提供战术参考。
无人作战智能体协同围捕问题可以描述为:在一个边界受限的区域内存在围捕者和目标两种类型的智能体,围捕作战智能体的任务是追捕目标并控制目标。根据目前国内外研究所述,默认每个作战智能体都配备有激光雷达等传感器,用于感知目标,暂不考虑无线电干扰、传输时间等问题。如图所示为作战智能体(围捕者)围捕示意图,作战智能体需越过重重障碍,躲避雷达探测实现围捕决策,黑色虚线圆圈表示雷达感知范围。当作战智能体分布在目标周围并且限制目标,协同围捕任务视为成功。
协同围捕难度划分
简单环境围捕:围捕难度最低等级,主要体现为无障碍环境、障碍物较少(U 字型、一字型、小范围障碍),或设定地图范围较小,作战智能体仅需要躲避障碍机动至目标附近即可。
复杂环境:主要适用于较为熟悉的战场环境结构,作战智能体围捕前对障碍物或威胁区域(山脉、峡谷、雷达探测)的相对位置有清晰的认知,无需探测。这一类战场情况对于多作战智能体协同围捕来说是中等难度也是目前研究最为成熟的。只需要在任务开始执行之前,运用相关算法规划出最为合理且高效的航路,给作战智能体分配目标等任务信息,并加载给作战智能体,作战智能体就能够按照预定任务决策方案完成作战任务。
未知环境围捕:在任务开始前并未掌握目标位置,而对于作战区域的具体威胁情况未探测到,这需要作战智能体在执行任务过程中实时探测和感知环境,并根据环境变化调整动作,以保证任务的完成,且地图规模较大,障碍数量较多。此类情况是最为复杂和困难的,即目标和威胁源位置不确定,这需要作战智能体在高维度环境中协同作战,实时规划动作。
协同围捕任务分解
本文按照围捕问题的流程对任务进行分解,把围捕分为初始状态、避障状态、编队控制、和围捕状态。以山地环境避障问题为例,可能会有各种障碍物(不同的山脉、山谷)作战智能体需要能够识别并避免与这些障碍物发生碰撞。这可能涉及到使用传感器(如摄像头、雷达、激光雷达等)来感知周围环境,并使用相应的算法进行避障决策,以确保安全穿越环境。
初始状态
目前作战智能体与敌方目标处于障碍两侧,且对环境态势未知,敌方雷达与山脉由我方自行侦测。
避障状态
如图所示,我方侦测到山脉位置,由先行部队针对此信息进行全局共享,躲避障碍。在我方已顺利通过山脉,先行部队感知到敌方部分雷达位置,为防止我方作战智能体群被敌方雷达探测,我方针对此信息进行全局共享,并持续针对所有目标实现侦测。
编队控制
随着作战智能体数量增加,集群编队的控制也变的更为复杂,因此编队的稳定性、时效性、实时性是合围成功必要因素。如图所示,作战智能体集群应维持在范围内,以保持编队运动协调,实现协同。
围捕状态
如图所示,我方已找到最佳围捕路线,能够躲避障碍与敌方雷达,沿此路线行进,实现对敌方目标群的围捕。
基于改进的 MADDPG 大规模多作战智能体围捕
MADDPG(Multi Agent Deep Deterministic Policy Gradient)算法是基于 DDPG 算法发展而来的,而 DDPG(Deep Deterministic Policy Gradient)算法则是受 DQN(Deep Q-Network)算法的启发,并承袭了 DQN 的许多特性,例如经验回放,目标网络冻结等。DQN 虽然使用神经网络代替了传统 Q 值表,但在面对维度爆炸问题时,Q 值计算并不够准确,导致算法训练不够稳定和性能下降等一系列问题。MADDPG 算法在面对多作战智能体大规模围捕任务时,将作战智能体在动作选择时从概率选择变为策略函数,可以提升在大规模围捕任务时的稳定性。
DeepMind 的研究人员基于 DDPG 算法和 actor-critic 框架进行了以下的改进,提出了多作战智能体深度确定性策略梯度算法 MADDPG 训练阶段,Critic网络可以利用全局状态信息来辅助训练。
- 在测试阶段只需要 Actor 网络参与,作战智能体仅使用自身观测进行决策。
- 不需要可导的环境变化,各作战智能体之间也无需进行信息沟通。
本质上,MADDPG 算法还是基于 DDPG 算法所做的改进,即每个作战智能体需要训练一个 Critic 网络和一个 Actor 网络。Critic 网络用来给动作打分,Actor 网络用来选取处于某一状态下的动作。不同的是,在多作战智能体动态环境下,Critic 网络的打分需要用到环境的全局信息,用以解决环境的非稳态问题。正是由于 MADDPG 为每个作战智能体均单独设计的 Critic 以及 Actor 网络,所以该算法不仅可以用于合作场景,也可用于对抗或博弈场景。由于该算法是基于 DDPG 算法所作的改进,基础的 MADDPG算法通常用于连续动作空间。
MADDPG 算法架构如图所示,共有 I 个作战智能体,每个作战智能体都有独立的Critic 网络以及 Actor 网络,在训练过程中,Critic 网络可以将各作战智能体的观测进行累加即全局观测和所有作战智能体的联合动作作为输入,输出该环境观测下,该动作的 Q 值,并以此为依据更新网络参数。在测试过程中,则不需要 Critic 网络的参与。这就意味着,在测试阶段,各作战智能体仅需自己的观测就可以有动作策略的输出,而不需要其他额外的信息,即中心式训练,分布式执行。
无人机蜂群技术
简介
无人机蜂群技术,是指通过先进的通信技术、自主导航与决策算法,将大量小型、低成本、功能各异的无人机组织成一个高度协同的群体,执行复杂多样的军事任务。这一概念源于自然界中蜜蜂、蚂蚁等生物群体的行为模式,其核心在于“群体智能”的应用。蜂群作战的优势显著,包括:
-
高效性:通过分布式任务执行,显著提高任务完成速度和效率。
-
冗余性:单体故障不影响整体任务执行,增强系统鲁棒性。
-
灵活性:能够根据战场态势快速调整编队和策略,适应复杂多变的作战环境。
-
低成本:大量使用小型、低成本无人机,降低了整体作战成本。
-
隐蔽性:小型无人机体积小、噪音低,难以被敌方探测和拦截。
关键技术解析
- 自主导航与定位:依赖GPS、惯性导航及视觉识别技术,确保无人机精准定位与路径规划。
- 通信与数据链:采用高速、低延迟、抗干扰的通信技术,保障群体内无人机间的信息交换。
- 群体智能算法:运用多智能体系统、机器学习和优化算法,实现无人机间的自主协同与决策。无人机智能集群技术通过研究生物群体智能,并将其映射到无人机集群协调自主控制领域中,提高其在复杂环境条件下的自主决策和规划能力。这种自主决策和规划能力在无人机集群表演中也非常重要,以确保数千架无人机能够按照预定图案精确飞行。
- 模块化设计:无人机设计具备模块化特点,便于快速更换任务载荷,满足不同作战需求。
- 态势感知与融合:集成多种传感器,实现战场环境的全面感知与数据融合分析。无人机智能集群技术需要高效的协同感知计算技术来满足实际复杂的环境和任务需求。这与无人机集群表演中的定位技术和通信技术密切相关,如超宽带无线高精定位系统(UWB定位系统)用于快速搭建可移动的多智能体集群技术验证。
- 分布式控制和协同通信:无人机集群表演和无人机智能集群技术都依赖于分布式控制和协同通信技术。在无人机集群表演中,通过三维建模、集群自组网通信和差分GPS等技术实现无人机之间的信息交换,确保运行轨迹精确到位。同样,在无人机智能集群技术中,分布式集群智慧和分布式探测也是关键技术之一。
任务分配与决策
在蜂群作战中,任务分配与决策是核心环节。
- 通过中央控制站或分布式决策系统,根据战场态势、无人机状态及任务需求,动态分配任务至各无人机。
- 决策过程需考虑效率、安全、资源优化等因素,利用群体智能算法快速生成最优解。
作战应用与模式
无人机蜂群技术可应用于侦察监视、电子战、目标打击、物资投送等多种作战领域。作战模式包括但不限于:
- 侦察与监视:利用无人机蜂群实现大范围、高分辨率的情报收集。
- 饱和攻击:通过大量无人机同时或连续发起攻击,提高敌方防御系统的拦截难度。
- 协同防御:构建防御网络,拦截敌方无人机或导弹。
- 精准打击:配合高精度制导武器,对高价值目标实施精确打击。
指挥与控制体系
构建高效的指挥与控制体系是无人机蜂群作战成功的关键。该体系应具备以下特点:
- 扁平化结构:减少指挥层级,加快决策与响应速度。
- 灵活组网:支持动态网络拓扑变化,确保通信稳定。
- 智能辅助决策:利用AI技术辅助指挥官制定作战计划,评估战场态势。
- 人机协同:充分发挥人的判断力和创造力,与无人机智能系统有机结合。
安全与风险挑战
无人机蜂群作战面临诸多安全与风险挑战,包括:
- 通信安全:易受干扰和窃听,需加强加密与抗干扰能力。
- 碰撞风险:高密度编队飞行增加碰撞概率,需精确导航与避障算法。
- 法律风险:跨国作战可能涉及复杂的国际法律问题。
- 伦理道德:自动决策可能引发道德争议,需明确责任归属与伦理规范。
发展趋势与前景
随着人工智能、通信技术、新材料等领域的不断进步,无人机蜂群联合指挥作战技术将迎来更加广阔的发展前景。未来,无人机蜂群将更加智能化、自主化,能够执行更加复杂、精细的作战任务。同时,加强国际合作,共同制定国际规则和标准,将是推动无人机蜂群技术健康发展的重要方向。无人机蜂群作战技术有望成为未来战争中的重要力量,改变战争形态与作战方式。
智能决策
原理
当交战双方处于近距离空战状态中时,单纯依靠飞行员的视力难以捕捉敌方战机,尤其是在速度极快、机动性极强的飞行姿态下更加难以时刻保持对地方战机的位置、姿态、武器状态多种情况的观察以及预测敌方战机的移动轨迹;而 AI 系统可以很好地弥补飞行员在这一方面功能的不足。通过飞机上的多传感器实时捕捉敌方战机的各种数据,如位置、姿态、方位、速度等,再将这些数据作为输入交给训练好的深度强化学习模型,便能在极短的时间内得到输出,也就是在当前状态下我方能获得最大收益的决策。
传统空战存在着一系列由人体本身生理极限而不可突破的限制,尤其是在近距离狗斗(Dog Fight)场景需要做出高机动性的飞行动作与战术决策时,飞行员可能面临视线受阻、信息过载、决策失误等一系列问题。
在末端攻击阶段,导弹需要快速决策,选择最佳的攻击路径和方式。智能决策格斗强调的是在对抗性环境中,AI辅助下的快速决策过程。这不仅限于直接攻击敌人,还包括如何保护自己免受对方反击。弹载AI赋予导弹在攻击过程中的推理、判断和自主决策能力,使其能够根据实时感知的战场信息,快速评估威胁程度,制定最优的攻击策略,并在必要时进行战术调整,以应对复杂多变的作战环境。
应用方式
- 在高复杂性战场最前沿,目标状态瞬息万变,需要导弹能“杀伐决断”。智能化导弹在攻击过程中可具备推理、判断和决策能力,凭借D载自主决策系统独立作战。
- 态势评估:AI可以实时监控战场态势,分析敌我双方的力量对比、地理位置以及其他关键因素,为指挥官提供决策支持。随着智能化导弹走向战场,发射后在线决策、在线任务规划、作战区战略巡航等新型战法将发挥显著非对称优势。
- 战术建议:基于历史数据和模拟演练的结果,AI可以提出最优的战术策略,例如何时发射、选择哪种武器配置等。当导弹接近目标区域时,弹载AI系统会综合考虑目标的类型、位置、速度、防御状态以及周围的战场环境等因素,自动选择最佳的攻击角度、攻击时机和攻击方式。在飞行过程中,导弹可利用先进导引头对目标在线进行识别。这就允许发射平台在只需概略目标指示信息时,就能发射导弹完成精确打击;可根据实时感知的信息,自主完成弹道规划,自动更新路线;可随时再编程,重新发动攻击,灵活变更目标并再瞄准;也可在目标区进行毁伤效果评估,重新选择攻击目标。
- 自动化交战:某些情况下,AI可以直接控制导弹的发射和制导,减少人为延迟,提高反应速度。此外,它还可以执行复杂的规避动作,以躲避敌方火力。
- 例如,在面对多个目标时,导弹可以根据目标的价值和威胁程度,优先攻击高价值目标或对自身威胁最大的目标;在遇到敌方的拦截或干扰时,能够及时调整攻击策略,如改变飞行轨迹、释放干扰弹等,以提高攻击的成功率。
解决方案
光电告警
F-35装备了量身定制的分布式孔径感知系统(EO DAS),利用“智能化威胁数据库识别系统”,通过深度学习自主分析海量的态势感知数据,自主判断识别目标类型,辅助预测分析或预警,大幅提升了目标全向感知能力与防御对抗能力。苏-35配备了先进战斗机光电传感器综合系统及机载“决斗系统”人工智能辅助作战系统,大幅增强了导弹全向告警能力,将飞机上雷达、IRST、导航系统等获得的数据进行综合分析和管理,计算出最佳的飞行和作战方案,提交给飞行员决策,更是大幅强化了干扰自主对抗效能。
探测制导一体化与自主决策能力
在对战场态势感知与态势理解的基础上,能够按照现有态势,以实现打击效能最大化为目的,自主决策打击群中每个成员的作战方案,并能够根据实时探测信息,实时调整方案细节,确保在有效规避威胁的同时,顺利完成打击任务。
自学习自进化自推理能力
精确制导武器在战场中,时时刻刻获取海量信息,在对信息进行融合、理解的同时,能够基于战场信息,自主对战场态势、决策结果等进行推理;并可以依赖自主决策、自主行动以及战场的实时反馈,来进行自主学习,在不断地学习实践中,实现自我进化。
对海、对地、对空成像末制导场景
对海成像末制导
国外典型对海作战武器主要包括空射、岸射、舰射等不同发射形式的反舰导弹,如“飞鱼”、“捕鲸叉”、“花岗岩”等,大多采用雷达末制导,部分采用成像末制导作为辅助末制导方式。随着舰船隐身技术以及有源干扰、无源干扰等“软”杀伤技术的发展,使得对海精确制导武器面临着日益复杂的电磁环境,驱使新一代武器末制导方式由单一探测体制转向包含光电成像探测的多模复合末制导方式。
反舰导弹等对海作战武器在成像末制导阶段面临复杂的海背景环境与强电磁对抗环境,其作战目标类型主要为舰船等慢速运动目标。一般地,其成像末制导采用人在回路与智能信息处理融合的方式实现捕获、跟踪,智能信息处理可根据攻击任务和目标特性大致划分为三个阶段:
- 远距目标截获阶段,主要面临海杂波、海亮带、鱼鳞光、海天线、海地线等复杂背景带来的目标检测问题;
- 中近距目标跟踪阶段,主要面临海亮带、鱼鳞光、舰船倒影及尾浪、民用船舶、岸岛背景、烟幕对抗等带来的疑似目标与多目标识别、目标遮挡、跟踪点漂移等抗遮挡、抗干扰跟踪问题;
- 近距目标关键部位识别打击阶段,主要面临目标相对尺度变化、烟幕对抗、目标充满探测器视场等带来的局部关键部位识别、跟踪点选择等精确稳定跟踪问题。
同时,伴随着人工智能的发展,新一代的对海精确制导武器,如LRASM反舰导弹、NSM反舰导弹等更多的采用智能化的多模导引头,通过采用自动目标识别(ATR)、自主导航规划等技术,提升了反舰导弹的突防能力与作战效能,使其具备了智能化的雏形。值得一提的是2011年以色列的“拉斐尔先进防御系统”有限公司推出的第五代远程、自主、精确制导武器系统“海上破坏者”反舰导弹,支持对静止和运动目标的自动捕获(ATA)和识别(ATR),使用经过训练的人工智能(AI)和机器学习(ML)处理搜索者获得的大数据资源,能够对各种高价值的海上和陆地目标,提供显著的攻击性能。
对地成像末制导
国外典型对地攻击武器主要包括空射、舰射、陆基等不同发射形式的空地导弹、巡航导弹、反坦克导弹等,如“小牛”空地导弹、“战斧”巡航导弹以及“标枪”反坦克导弹等,多采用电视、红外等成像制导作为末制导方式。同时,也发展了多型电视/红外、红外/雷达等多模复合末制导技术的对地武器。空地导弹等对地打击武器在成像末制导阶段面临复杂地面背景环境与强电磁对抗环境,其作战目标类型包括装甲车等快速运动目标、阵地等固定工事。一般地,与反舰导弹类似,其成像末制导采用人在回路与智能信息处理融合的方式实现捕获、跟踪,智能信息处理可根据攻击任务和目标特性大致划分为三个阶段:
- 远距目标截获阶段,主要面临森林、沙漠、草地、城市、乡村、天地线等复杂地物背景带来的目标检测问题;
- 中近距目标跟踪阶段,主要面临树林、建筑物、烟尘、民用车辆、伪装、烟幕与诱饵对抗等带来的疑似目标与多目标识别、目标遮挡、跟踪点漂移等抗遮挡、抗干扰跟踪问题;
- 近距目标关键部位识别打击阶段,主要面临目标相对尺度变化、烟幕对抗、目标充满探测器视场等带来的局部关键部位识别、跟踪点选择等精确稳定跟踪问题。
对空成像末制导
国外典型对空目标作战武器主要包括空空、舰空、地空等不同发射形式的空空导弹、防空导弹等,比如“AIM-9X”空空导弹、“标准”系列防空导弹等,中近距格斗弹多采用红外成像制导作为末制导方式,中远程空空、防空导弹多采用雷达制导方式。同时,为有效应对空中目标的威胁,各军事强国积极发展了红外双/多波段、红外/雷达等末制导体制的新型空空、防空导弹等精确制导武器。
空空导弹等对空目标作战武器在成像末制导阶段面临复杂的背景环境与强电磁对抗环境,其作战目标类型包括战斗机、轰炸机、导弹等高速、超高速运动目标。一般地,其成像末制导采用智能信息处理方式实现自主捕获、自动识别与跟踪,智能信息处理可根据攻击任务和目标特性大致划分为三个阶段:
- 远距目标截获阶段,主要面临亮云、海亮带、鱼鳞光、海天线、沙漠、天地线等上视或下视复杂背景带来的目标检测问题;
- 中近距目标跟踪阶段,主要面临亮云、海亮带、鱼鳞光、红外点源/面源诱饵对抗等带来的多疑似目标识别、干扰严重遮挡、跟踪点漂移等抗遮挡、抗干扰跟踪问题;
- 近距目标关键部位识别打击阶段,主要面临目标相对尺度急剧变化、诱饵对抗、目标充满探测器视场等带来的局部关键部位识别、跟踪点选择等精确稳定跟踪问题。
空中目标与地面以及海面等目标打击任务相比,天空背景与地面、海面等背景相比较为简单,但作战目标具有更高的速度与机动性,对成像末制导系统提出更高的实时性要求。
总结
精确制导武器走向智能化、成像末制导智能化均是技术发展的必然,综合精确制导武器未来作战环境、人工智能未来发展趋势、人脑认知与思维特点,围绕精确制导武器的应用,提出将成像末制导的智能化划分为三个阶段:功能级智能技术、系统级单体智能技术、体系级群体智能技术。
功能级智能技术
以弹载应用为出发点,以成像末制导过程为突破点,立足智能化技术在自动目标识别、自主导航、多模态信息融合等方向的研究,提升精确制导武器在战场感知、目标识别、自主导航、干扰对抗与自主突防以及自主决策方面的智能化水平。针对当前的多波段、多模复合导引头,推进多模态及多波段智能探测与融合技术、探测与制导一体化信息处理技术、深度神经网络轻量化技术等的工程化应用。开展基于场景与态势感知的自适应智能复合/融合技术,智能网络重构与信息处理架构动态重组、智能目标识别、云端人工智能等技术的研究,使得成像末制导具备人类视觉的部分认知功能,达到功能级智能化水平,为实现系统级单体智能技术奠定良好的基础。
系统级单体智能技术
精确制导武器作为作战体系中独立自主的一员,对于作战支撑体系不再仅仅是依属关系,而是能够自主发现目标、识别目标、攻击目标。成像末制导具备个体对某单一/多个目标的探知、感知、认知处理的视觉脑启发信息处理流程与特征,完全具备人类视觉的全部认知功能。开展关键特征、关键思维模式等的自学习网络、自进化网络、自迁移网络、自推理网络技术,记忆与经验模式网络技术,个体视觉与运动关联网络技术,专用类脑信息处理架构与处理器等技术研究。
体系级群体智能技术
精确制导武器发展到最后,能够明白作战意图,并为实现作战目的,能够在作战集群中自主完成各作战成员的任务分配与合作,完全具备人类的社会化分工能力。成像末制导具备群体对某单一/多个目标的探知、感知、认知处理的视觉脑启发信息处理流程与特征,主要是开展群体关键特征、群体关键思维模式等的协同自学习网络、自进化网络、自迁移网络、自推理网络技术,群体记忆与经验模式网络技术,群体视觉与运动关联网络技术,专用类脑协同信息处理架构与处理器等技术研究。
参考资料
- 智能传感器应用实践 拓展阅读 4-2 AI伴着导弹飞 - 道客巴巴
- 无人机蜂群联合指挥作战技术详解_无人机蜂群的网络安全-CSDN博客
- 7598架无人机表演背后惊人的AI战力|军用无人机|大疆|通信|飞行_手机网易网
- 【特约报告】导弹武器智能精确制导技术发展分析
- 陈栋, 田宗浩. 面向深度学习的弹载图像处理异构加速现状分析[J]. 航空兵器, 2021, 28(3): 10-17.
- 美国AI辅助高超声速导弹防御能力发展浅析
- 飞航导弹人工智能应用
- 于俊庭, 李少毅, 张平, 罗振宇. 光电成像末制导智能化技术研究与展望[J]. 红外与激光工程, 2023, 52(5): 20220725. DOI: 10.3788/IRLA20220725
- 陈咸志, 罗镇宝, 李艺强, 陈陶. 自动目标识别在图像末制导中的应用[J]. 红外与激光工程, 2022, 51(8): 20220391. DOI: 10.3788/IRLA20220391
- 罗天翔.基于深度强化学习的近距空战轻量化决策网络设计[D]. 电子科技大学, 2024. DOI: 10.27005/d.cnki.gdzku.2024.005349.
- 罗仁威.基于强化学习的非对称空战多智能体系统的设计与实现[D]. 电子科技大学, 2023. DOI: 10.27005/d.cnki.gdzku.2023.004687.
- 郭星泽.基于深度强化学习的多作战智能体协同围捕研究[D]. 大连交通大学, 2024. DOI: 10.26990/d.cnki.gsltc.2024.000215.
- 段续庭,周宇康,田大新,等.深度学习军事领域应用综述[C]//中国科学技术协会,交通运输部,中国工程院,湖北省人民政府.2022世界交通运输大会(WTC2022)论文集(交通工程与航空运输篇).北京航空航天大学交通科学与工程学院;军事科学院系统工程研究院;中国人民解放军军需工业学院;,2022:9.DOI:10.26914/c.cnkihy.2022.019819.
- 宋晓茹,刘康,高嵩,等.基于深度学习的军事目标识别算法综述[J].科学技术与工程,2022,22(22):9466-9475.
- 祝学军,赵长见,梁卓,等.OODA智能赋能技术发展思考[J].航空学报,2021,42(04):16-25.
- 符惠桐.基于深度学习的目标识别轻量化模型研究[D]. 西安工业大学, 2022. DOI: 10.27391/d.cnki.gxagu.2022.000123.
- 孙智孝,杨晟琦,朴海音,等.未来智能空战发展综述[J].航空学报,2021,42(08):35-49.
- 郭亚楠,曹小群,何友,等.人工智能赋能军事领域的思考与展望[J].计算机仿真,2024,41(05):1-6.
- 张龙,雷震,冯轩铭,等.军事大模型:应用分析、关键技术和评估体系框架[C]//国防科技大学系统工程学院.第六届体系工程学术会议论文集—体系工程与高质量发展.军事科学院系统工程研究院;中国人民解放军31511部队;,2024:14.DOI:10.26914/c.cnkihy.2024.028436.
- 崔翛龙,高志强,姬纬通,沈佳楠,张敏,邱鑫源.“艾武大模型+”:一种军事大模型系统的开发与实证[J].数据采集与处理,2024,(3):588-597
- 新一代箭载高速光纤总线技术研究与应用*_参考网