收藏关注不迷路!!
🌟文末获取源码+数据库🌟
感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
前言
基于LSTM(长短时记忆网络)的新闻文本摘要系统是一种利用深度学习技术自动生成新闻摘要的系统。以下是对该系统的详细介绍:
一、系统概述
新闻文本摘要系统的核心任务是将长篇的新闻文章自动转换为简短、精炼的摘要,同时保留原文的关键信息。基于LSTM的系统在这一任务中表现出了显著的优势,因为LSTM能够捕捉文本中的长期依赖关系,这对于理解新闻文章的上下文和生成准确的摘要至关重要。
详细视频演示
文章底部名片,联系我看更详细的演示视频
一、项目介绍
环境:Python3.8.5、OpenCV4.9、torch1.12.1
————————————————
二、功能介绍
功能需求:
1、数据处理: 编写数据处理模块,将新闻文本数据进行清洗、分词、向量化等预处理操作,以便于输入 LSTM 模型。
2、LSTM 模型构建: 创建一个 LSTM 模型,包括一个 LSTM 编码器和一个解码器。编码器将输入文本编码成语义向量,解码器将该向量解码成摘要文本。
3、训练模型: 实现模型的训练过程,包括定义损失函数、选择优化器、迭代训练模型参数,并根据训练数据不断调整模型。
4、摘要生成: 开发摘要生成模块,用于输入一篇新闻文本,通过训练好的 LSTM 模型生成对应的摘要。
5、评估模型: 编写评估模块,使用自动评价指标(如 ROUGE)或人工评价指标来评估生成摘要的质量,帮助改进模型。
6、用户界面(可选): 如有需要,创建一个简单的用户界面,方便用户输入新闻文本并获取生成的摘要。
7、模型保存与加载: 实现模型的保存和加载功能,以便在训练完成后保存模型,并在需要时重新加载模型进行推理。
三、核心代码
部分代码:
四、效果图
五 、源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻