Python基于深度学习的医学图像诊断系统

收藏关注不迷路!!

🌟文末获取源码+数据库🌟

感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人


前言

  Python基于深度学习的医学图像诊断系统是一个前沿的医疗技术应用,它结合了深度学习的强大图像处理能力与医学图像诊断的专业知识,旨在提高医学图像诊断的准确性和效率。以下是对该系统的详细介绍:
一、系统背景与意义
医学图像诊断在医疗领域具有重要地位,它能够帮助医生发现、分析和诊断多种疾病。然而,传统的医学图像诊断方法依赖于医生的经验和知识,存在主观性和误诊的风险。随着深度学习技术的发展,特别是卷积神经网络(CNN)等模型在图像识别领域的成功应用,为医学图像诊断提供了新的思路和方法。基于深度学习的医学图像诊断系统可以自动从医学图像中提取特征,并进行模式识别,从而辅助医生进行更准确、高效的诊断。

详细视频演示

文章底部名片,联系我看更详细的演示视频

一、项目介绍

开发语言:Python
python框架:Django
软件版本:python3.7/python3.8
数据库:mysql 5.7或更高版本
数据库工具:Navicat11
开发软件:PyCharm/vs code
前端框架:vue.js

二、功能介绍

该系统通常包括以下几个核心模块:
图像预处理模块:
对输入的医学图像进行清洗、去噪、增强等预处理操作,以提高图像质量和诊断准确性。
可能还需要对图像进行归一化、裁剪或缩放等处理,以适应深度学习模型的输入要求。
特征提取模块:
利用深度学习模型(如CNN)自动从医学图像中提取有用的特征信息。
这些特征信息可能包括图像的纹理、形状、边缘等细节特征,以及更高层次的语义特征。
分类器训练模块:
使用标注好的医学图像数据集对深度学习模型进行训练,使其能够学习从特征向量到诊断结果的映射关系。
训练过程中,可以通过调整模型参数、优化算法等来提高模型的分类性能。
诊断结果输出模块:
将训练好的模型应用于新的医学图像数据,自动输出诊断结果。
诊断结果可能包括疾病的类型、位置、大小等信息,以及相应的置信度或概率值。
用户交互与反馈模块:
提供友好的用户界面和交互方式,方便医生查看和选择诊断结果。
允许医生对诊断结果进行确认、修改或添加备注等操作,以进一步提高诊断的准确性。
收集用户对系统的反馈意见,用于优化系统性能和提高用户体验。

三、核心代码

部分代码:


def users_login(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")
        if req_dict.get('role')!=None:
            del req_dict['role']
        datas = users.getbyparams(users, users, req_dict)
        if not datas:
            msg['code'] = password_error_code
            msg['msg'] = mes.password_error_code
            return JsonResponse(msg)

        req_dict['id'] = datas[0].get('id')
        return Auth.authenticate(Auth, users, req_dict)


def users_register(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")

        error = users.createbyreq(users, users, req_dict)
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


def users_session(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}

        req_dict = {"id": request.session.get('params').get("id")}
        msg['data'] = users.getbyparams(users, users, req_dict)[0]

        return JsonResponse(msg)


def users_logout(request):
    if request.method in ["POST", "GET"]:
        msg = {
            "msg": "退出成功",
            "code": 0
        }

        return JsonResponse(msg)


def users_page(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code,
               "data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
        req_dict = request.session.get("req_dict")
        tablename = request.session.get("tablename")
        try:
            __hasMessage__ = users.__hasMessage__
        except:
            __hasMessage__ = None
        if __hasMessage__ and __hasMessage__ != "否":

            if tablename != "users":
                req_dict["userid"] = request.session.get("params").get("id")
        if tablename == "users":
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = users.page(users, users, req_dict)
        else:
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = [],1,0,0,10

        return JsonResponse(msg)


四、效果图

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

五、文章目录

目 录
摘 要 1
Abstract 2
第1章 绪 论 5
1.1研究背景 5
1.2研究的目的 5
1.3国内外研究现状 6
1.4 课题研究的主要内容 6
第2章 相关技术 7
2.1 Python语言 7
2.2 Django框架 7
2.3 MySQL数据库 7
2.4 VUE技术 8
2.5 Hadoop介绍 9
2.6 推荐算法介绍 9
2.7系统运行环境 9
2.8本章小结 10
第3章 系统分析 11
3.1系统可行性分析 11
3.1.1经济可行性分析 11
3.1.2技术可行性分析 11
3.1.3操作可行性分析 11
3.2系统现状分析 12
3.3系统用例分析 12
3.4系统流程分析 14
3.5本章小结 15
第4章 系统设计 16
4.1系统功能结构设计图 16
4.2数据库设计 16
4.3本章小结 30
第5章 系统实现 31
5.1系统功能实现 31
5.1.1前台首页页面实现 31
5.1.2个人中心页面实现 32
5.2 后台模块实现 33
5.2.1管理员模块实现 33
5.2.2服务人员模块实现 38
5.3本章小结 38
第6章 系统测试 39
6.1系统测试目的 39
6.2系统功能测试 39
6.3系统测试结论 40
6.4本章小结 40
结 论 41
参考文献 42
致 谢 43

六 、源码获取

下方名片联系我即可!!


大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕业程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值