基于深度学习的ECG疾病识别研究

摘 要

人体中最重要的器官就是心脏,它为流淌在全身的血液提供动力,假如心脏出现了某些问题,即产生了心血管疾病症状,那么血液循环的动力系统就出现了问题,就会影响我们的身体健康,严重的甚至会引发死亡。例如心血管疾病之一的心肌梗塞,它是一种常见的病症,经济的快速发展使得人们的生活水平快速提升,相对应的工作等压力也日益剧增,致使很多人处于亚健康的身体状态,长此以往就极有可能会引发心绞痛——心肌梗塞的前期症状,进而可能发展成为心肌梗塞,更严重的引发死亡。因此能够及时、准确的诊断出病症,做出更加有效的病理控制,对于减少心肌梗塞的死亡率至关重要。
心血管类疾病的诊断大多数都是由临床医生根据心电图进行,但是这样进行诊断的效果还不是很理想,疾病进一步的确诊还需要由专业医师进行。所以,在人工智能、大数据时代,将计算机算法的快速反应以及通过改进的计算机算法相结合进行疾病的诊断的步伐应该加快。
本文从Physiobank数据库中PTB心电数据库中获得心肌梗塞患者以及健康人群的ECG数据信号,通过基于小波变化的去噪方式对提取的信号进行预处理,使用长短期记忆法(即LSTM)对预处理之后的ECG信号进行特征提取,建立心肌梗塞的支持向量机模型(SVM)以及线性回归模型,分析心肌梗塞模型特征,由此归纳总结心肌梗塞患者的ECG信号特有标志,从而为更加高效、准确的对疾病做出诊断提供可能,为患者争取更多的治疗机会。

关键词:心电信号;心肌梗塞;小波去噪;提取;识别

Abstract
The most important organ in the human body is the heart, which provides power for the flow of blood throughout the body. If there is something wrong with the heart, that is, there are symptoms of cardiovascular disease, so there is something wrong with the power system of blood circulation, which will affect our health, and even lead to death. Such as cardiovascular disease, one of myocardial infarction, it is a common disease, the rapid development of economy makes people’s life level is rapidly increasing, the corresponding work pressure is also growing, such as causing a lot of people in the sub-health state of the body, in the long term it is associated with a greater risk of early symptoms of angina pectoris, myocardial infarction, which may become a myocardial infarction, a more serious cause death. Therefore, timely and accurate diagnosis of the disease and more effective pathological control are crucial to reduce the death rate of myocardial infarction.
Most of the diagnosis of cardiovascular diseases is carried out by clinicians according to the electrocardiogram, but the effect of such diagnosis is not ideal, further diagnosis of the disease still needs to be carried out by professional doctors. Therefore, in the era of artificial intelligence and big data, the rapid response of computer algorithms and the combination of improved computer algorithms for disease diagnosis should be accelerated.
This article from Physiobank databases of PTB ECG database of myocardial infarction patients and healthy people ECG data signal, through changes based on wavelet denoising method to extract the signal preprocessing, using the method of short - and long-term memory (LSTM) for pretreatment of ECG signal feature extraction, and to establish the support vector machine (SVM) model of myocardial infarction and the linear regression model, analyzing the characteristic of the myocardial infarction model, the inductive conclusion ECG signal characteristic sign of myocardial infarction patients, thus for more efficient and accurate to the disease diagnosis possible, To strive for more treatment opportunities for patients.

Key words:ECG; myocardial infarction; wavelet denoising; extraction; recognition

第1章 绪论

1.1研究背景
城市化、老龄化在经济的发展之下进程也进一步加快,人们不健康的生活方式越来越突出,这样就使得引发心血管病的危险因素暴露的越发显著和快速,从而中国心血管病的发病人数持续增加,特别是农村,近几年来心血管病死亡率持续高于城市水平[1]。据不完全统计,目前我国心血管病患病人数约为2.9亿,心血管病死亡率在各种原因导致的死亡率中占据榜首,平均每10秒钟就有一人死于心血管疾病[2]。更加令人需要注意的是此类数据近些年仍然处于上升状态,尤其是在成年人群,这一数据一直居高不下,中国心血管病的负担日益加重,已经成为迫在眉睫需要解决的威胁公众身体健康的问题,所以加强现代科技技术与医疗技术的结合,加快运用计算机对疾病的识别、诊断进行辅助的步伐尤为重要。
在心血管疾病中,突发性心肌梗死成为导致死亡的一大重症。在郝志国(主要从事法医现场勘查、法医病理学、法医临床学检验鉴定工作)对心肌梗塞死亡法医学分析3例中,3例死者都是在经历过打斗之后身体感到有不舒服的感觉,随后立即倒地,并且在短时间内死亡。经尸体检验发现,这3例死者冠动脉严重狭窄,同时研究人员还发现了不同程度的陈旧的、新鲜的心肌梗塞[3]。心肌梗塞是由于冠状动脉阻塞,供血不足导致心肌缺血坏死,45岁以下人群发病率逐年上升,而此病及时就医是最重要、最有效的手段。
随着科技的发展和时代的需求,采用计算机相关技术对医学诊断进行分析和处理已得到越来越多的应用,尤其是对医疗中是否患有某项疾病的图像的识别诊断[4]。心电图(electrocardiogram,ECG)能够反应人体心脏健康状况,是判断是否患心血管疾病的重要依据,在临床上被广泛用于心血管疾病的筛查和诊断[5]。但是,目前仅仅是由临床医生通过心电图波形的变化来进行心血管疾病的诊断的效果还不够理想,还需要专业医师的进一步确诊;但是总是会发生存在一些心电图的特征没有明显异常特征的患者,而是只有在发病或者是病情恶化的时候才呈现明显的病症特有的波段异常特征[6],这一过程的发生,无疑使得患者确诊以及做出有效的病理措施的时间增加,众所周知在医学诊断中,时间就是生命,也许仅仅一秒之差,可能对于患者来说就是生死关头的问题,所以利用现代计算机技术与心电诊断进行结合以便及时、有效做出诊断对于医生、患者来说都至关重要。
世界卫生组织的统计数据显示,心血管疾病已经成为导致人们死亡的“头号杀手”,每年有超过1770万的人死于心血管疾病[12,13],心血管疾病的死亡率远远高于癌症、艾滋病等在内的疾病。更硬挨让人们引起重视的是,心血管疾病的发生与年龄、性别等并没有关系,而且近些年青少年发生心血管疾病并导致死亡的案例屡见不鲜,逐渐成为威胁人类健康的重要因素。研究表明,睡眠质量不好的人患心血管疾病的概率比其他疾病高出2到3倍,而且极度容易引发心肌梗塞的发生,世界卫生组织报告,全世界三分之一左右的人口存在睡眠问题,由此可见,存在潜在型心肌梗塞患者。而心肌梗塞疾病的致死率又高于其他心血管疾病,在心肌梗塞发生时,最好的方法就是及时就医,为在早期还没有发生心肌组织改变的心肌细胞进行溶栓治疗争取时间,缩小坏死面积,恢复心肌的功能,减少死亡率。
在整个社会环境的影响下,人们的生活方式不够健康,没日没夜的加班、不分时间的吃着外卖等等,养成了不够规律、不够健康的生活习惯,使得人们的身体每况愈下,不仅仅包括中老年人,就连青少年由于心血管疾病而发生猝死的情况也更多,所以,在倡导健康生活方式的情况下,能够更加及时、准确的对类似心肌梗塞这样病情发展迅速的疾病做出诊断并给予病理治疗在现阶段以及以后的发展中尤为重要。
1.2国内外研究现状
心电图(即ECG)是心脏活动的表现形式,临床医生、专业医师可以通过心电图的波形特征可以判断出心脏可那个出现了某些问题,由此来给患者相应的病理康复建议。
ECG信号中不仅仅有作为疾病判断依据的心电信号,同时还存在有影响分析特征的噪声,主要包括基线漂移噪声、工频噪声干扰和高频肌电干扰三种[8]。要通过心电图进行疾病的识别诊断,首先需要对心电信号中存在的“噪声”进行去除[11]或者降低其对心电信号的干扰,降噪进行完毕后再进行心电信号的分析判断,这样得来的结果才更加准确,才能对疾病进行更加良好、准确、高效的诊断。
目前研究中使用频率较高的去噪方法主要包括:1)基于滤波器的噪声去除;2)基于经验模态分解法(Empirical Mode Decomposition,EMD)的噪声去除;3)基于小波变换的噪声去除[9]。
小波变换的噪声去除,是通过小波变换多尺度分解ECG信号,在信号重构时去除噪声。它拥有傅里叶变换局部化的思想,也可以进行时频变换[9],再噪声去除的同时,还要保证重要心理信号的有效保存,基于小波变换的噪声去除就拥有这样的优势[10];依据滤波器的噪声去除主要是依据噪声频率特征进行去除,经验模态分解法是将原始信号进行变换,然后将其分解成有限个固有模式函数,与这两种方法相比,小波变换在走啊还是那个去除过程中的能力更强,所以它的应用更广泛。
在去噪完成之后需要对ECG信号进行特征提取,应用于深度学习中的特征提取方法种类很多,为了能够更好的进行保存整个信号前后的状态,进行更有效的分析诊断,选用“长短期记忆网络”(即LSTM)进行ECG信号去噪之后的特征提取,它是一种特殊的RNN网络,可以保存上下文的状态,解决长期依赖性问题,而不再局限于传统神经网络在空间上的边界,它在时间序列上有延拓,即本时刻的隐藏层和下一时刻的隐藏层之间的节点间有边。因此,LSTM网络被设计为处理远距离时间依赖性,可以提取时间序列的信息[8]。
在特征提取完毕之后,下面就可以使用智能算法进行模型的建造、分类、分析,为进一步的疾病识别诊断做最后一步的准备。目前常用的算法有:支持向量机(SVM)、人工神经网络(ANN)和线性判别(LD)。在这些算法中,最常用的算法之一是SVM,如Chazal等人[14]在模拟层次结构中使用SVM来解决MIT-BIH数据库不平衡问题[5,14]。
经历过一系列的处理之后ECG信号相对来说可用性更高,对于疾病的诊断也更加精确。在大数据、人工智能的推动下,很多繁琐的工作将会变的相对简易,同时准确性、高效性也将进一步提高。
1.3本文研究内容及章节安排
从前文叙述的背景以及各项数据的描述中可以发现,心电图的研究对于目前以及以后的发展来说必不可少,特别是在计算机技术辅助下的医疗诊断方面,对于心肌梗塞的图像特征提取研究也不是很多,所以,本文在Pyhsiobank数据库选择PTB心电数据库,选取里面的心肌梗塞患者以及健康对照,对心肌梗塞患者的ECG图像进行去噪、特征提取,以便进行进一步的疾病诊断。
第1章为本文的研究方向和内容,包括研究现状和章节安排。
第2章为本文应用到的一些基本理论知识。包括心电图的基本产生原理、心电图导联、心电图各波段的介绍;心电数据库的介绍、心电信号的特征分析;噪声的分类、深度学习技术的介绍以及LSTM模型的相关介绍。
第3章为心电信号的处理算法。包括降噪处理和特征提取。
第4章为心电数据信号的分类识别。包括数据的收集整理、模型的建立以及心肌梗塞疾病的最终判断。
第5章是本文的总结。

第2章 基本概念理论

2.1心电图有关理论
2.1.1心电图原理
心肌细胞膜是半透膜,半透膜具有选择通透性,使得心肌细胞膜内外的电位会有变化。当处于静息状态的时候,膜外是一定数量的正电阳离子,膜内是负电阴离子,外正内负,膜外的电位相对膜内要高,称此为极化状态,在此状态下,不会有电位差,这样测得的电位线就是平直的,称为等电位线。但是一旦心肌细胞受到刺激,通透性发生变化,会产生除极过程,即阳离子会进入膜内,电位变正,由电流记录仪记录到的电位曲线称为除极波,也就是P波和QRS波。除极完成之后阳离子会排出来,使得膜内点位再次变为负,恢复为极化状态,称为复极,由电流记录仪记录到的电位曲线称为复极波,其过程缓慢,幅度较低,不易测得,表现为T波。细胞复极之后,会再次恢复极化状态,没有电位差,测得等电位线。
心电图(ECG-electrocardiogram),是英国皇家学会玛丽医院的生理学教授Waller于1887年在犬和人类的心脏上应用毛细管静电计第一次记录得到。心电图记录的是人体心脏活动的可视时间序列,人体心脏的综合表现[7]可以由心电图直观的反应,所以心电图成为检查心血管疾病、医生诊断病患情况的重要依据之一。
2.1.2心电图导联
心电图导联就是通过与心电图机的电流计正负极相连的导线放置在人体不同部位的电路连接方式,目前广泛采纳的国际通用导联体系称为常规12导联体系,包括与肢体相连的肢体导联(包括标准肢体导联I、Ⅱ、Ⅲ和加压单极肢体导联aVR、aVL、aVF)和与胸部相连的胸导联(属单极导联,包括V1~V6导联)。
心脏电极的安放部位如表2.1所示。在进行常规心电图检查时,通常只安放4个肢体导联电极和V1~V6 6个胸前导联电极,记录常规12导联心电图。
两两电极之间或电极与中央电势端(也称威尔森中央电端)之间组成一个个不同的导联,通过导联线与心电图机电流计的正负极相连(如表2.2所示 ),记录心脏的电活动。两个电极之间组成了双极导联,一正一负。双极肢体导联包括Ⅰ导联,Ⅱ导联和Ⅲ导联;电极和中央电势端之间构成了单极导联,此时探测电极为正极,中央电势端为负极。avR、avL、avF、V1、V2、V3、V4、V5、和V6导联均为单极导联。由于avR、avL、avF远离心脏,以中央电端为负极时记录的电位差太小,因此负极为除探查电极以外的其他两个肢体导联的电位之和的均值。由于这样记录增加了avR、avL、avF导联的电位,因此这些导联也被称为加压单极肢体导联。
表2.1:电极名称及位置
Table 2.1: electrode name and location
电极名称 电极位置
LA 左上肢
RA 右上肢
LL 左下肢
RL 右下肢
V1 第4肋间隙胸骨右缘
V2 第4肋间隙胸骨左缘
V3 V2导联和V4导联之间
V4 第5肋间隙左锁骨中线上
V5 第5肋间隙左腋前线上
V6 第5肋间隙左腋中线上
V7 第5肋间隙左腋后线上
V8 第5肋间隙左肩胛下线上
V9 第5肋间隙左脊柱旁线上
V3r V1导联和V4r导联之间
V4r 第5肋间隙右锁骨中线上
V5r 第5肋间隙右腋前线上

表2.2:各导联连接示意
Table 2: connection diagram of each lead
导联名称 正极 负极
I LA RA
II LL RA
III LL LA
avR RA 1/2(LA+LL)
avL LA 1/2(RA+LL)
avF LL 1/2(LA+RA)
V1 V1 中央电势端
V2 V2 中央电势端
V3 V3 中央电势端
V4 V4 中央电势端
V5 V5 中央电势端
V6 V6 中央电势端

2.1.3心电图波段
临床医生都是根据心电图波形的变化作为依据,根据病理状态判断患者患病情况,心电图各波与波段之间的不同起伏状态分别表示不同的病症,因此对于心电图波段的研究至关重要,心电图各波段及相应心电活动的意义如表2.3所示。
(1)P波
正常心脏的电激动从窦房结开始,位于右心房与上腔静脉交界处的窦房结电激动会首先传导到右心房,然后再传导左心房形成P波。P波时限为0.12秒,高度为0.25mv。一般来说P波形状不高尖,振幅小,而且在不同的导联中P波的形状不同,在II导联和VF导联上表现明显[5],但是当心房扩大,两房间传导出现异常时,P波可能会表现为高尖或双峰。
(2)PR间期
PR间期代表由窦房结产生的兴奋经由心房、房室交界和房室束到达心室并引起心室肌开始兴奋所需要的时间,故也称为房室传导时间。正常PR间期在0.12~0.20秒。当心房到心室的传导出现阻滞,则表现为PR间期的延长或P波之后心室波消失。
(3)QRS波群
激动向下经希氏束、左右束枝同步激动左右心室形成QRS波群。QRS波群代表了心室的除极,激动时限小于0.11秒。当出现心脏左右束枝的传导阻滞、心室扩大或肥厚等情况时,QRS波群出现增宽、变形和时限延长。
(4)J点
QRS波结束,ST段开始的交点。代表心室肌细胞全部除极完毕。
(5)ST段
ST 段连接QRS波群和T波。代表心室肌全部除极完成,复极尚未开始的一段时间。此时各部位的心室肌都处于除极状态,细胞之间并没有电位差。因此正常情况下ST段应处于等电位线上。当某部位的心肌出现缺血或坏死的表现,心室在除极完毕后仍存在电位差,此时表现为心电图上ST段发生偏移。
(6)T波
T波代表了心室的复极。在QRS波主波向上的导联,T波应与QRS主波方向相同。心电图上T波的改变受多种因素的影响。例如心肌缺血时可表现为T波低平倒置。T波的高耸可见于高血钾、急性心肌梗死的超急期等。
(7)U波
某些导联上T波之后可见U波,目前认为与心室的复极有关。
(8)QT间期
代表了心室从除极到复极的时间。正常QT间期为0.44秒。由于QT间期受心率的影响,因此引入了矫正的QT间期(QTC)的概念。其中一种计算方法为QTc=QT/√RR。QT间期的延长往往与恶性心律失常的发生相关。
表2.3:心电图波段意义
Table 2.3: significance of ECG band
心电图波段 相应心电活动的意义
P波 心房除极
PR间期 房室传导时间
QRS波群 心室除极
ST段 心室除极完成
T波 心室复极化
U波 可能复极化有关
QT间期 心室除极到完全复极的时间
2.1.4心电数据库
目前国际上最重要也是最具权威性的心电数据库有4个:美国麻省理工学院与Beth Israel一员联合建立的MIT-BIH心电数据库;美国心脏学会的AHA心律失常心电数据库;欧盟的CSE心电数据库和QT心电数据库。
MIT-BIH心律失常数据库包含从 1975~1979年间BIH心律失常实验室的47名研究对象的48个30分钟长度双通道动态心电图记录片段,片段记录采样率为360Hz,数字分辨率为11位,47名研究者分别为25位年龄在32至89岁之间的男性和22位年龄在23至89岁之间的女性。在大多数记录中,上部信号是经过修饰的肢体导联II(MLII),通过将电极放在胸部上获得。下部信号通常是经过修改的导线V1(有时是V2或V5,有时是V4);至于上信号,电极也放在胸部。BIH心律失常实验室通常使用此配置。
AHA心律失常心电数据库包含两个系列的心电数据,第一个系列包含80个数据,第二个系列包含75个数据,每个数据持续时间为3个小时。每个系列分为8个心律失常大类,每类有10个心电数据(第二系列第五类只有5个)。采样频率为250Hz,数字分辨率为12位。创建AHA数据库主要是为了评估室性心律不齐分类器的性能,然而,该数据库不区分正常窦性心律与室上性异位搏动[5]。
CSE心电数据库,其开发目的主要是用于评价心电图自动分析仪的性能。
心电数据库主要是从现有的ECG数据库中选择的ECG记录,将选择好的记录统一规划管理,以供研究者调取使用。
2.1.5心电信号特征
(1)近场性[6]:信号只有在人体表面才能检测到,离开即使很小的距离也检测不到信号;
(2)频率低:心电信号强度微弱,一般为mV量级;
(3)干扰强:干扰既来自生物体内,如肌电干扰、呼吸干扰等,也来自生物体外,如干扰信号与本身心电信号频带重叠的工频干扰、信号拾取时因为不良接地导致的外来干扰等。
频带的重叠会导致在对心电信号降噪时相对困难。
使用MATLAB软件进行数据收集分析绘图如图2.1所示。
在这里插入图片描述

图2.1 MATLAB绘制ECG信号
Figure 2.1 mapping ECG signal by Atlas
此图为PTB心电数据库中编号为1的样本数据,通过MATLAB软件将其展现为此形式,此图波形可以看出,其起伏幅度并不是很明显,所以在分析心电图并通过心电图判断是否患有心血管类疾病时,需要临床医生或专业医师通过其临床经验以及所掌握的知识做出诊断,而对于普通人来说,或许仅仅能够看出其波形有了不明显的起伏变化,但是要想得出病理性的结果却很难,所以应用计算机技术进行医疗诊断的辅助的需要日渐重要。
心肌梗塞患者的心电图波形特点表现为:ST段弓背抬高或者极度压低,T波倒置或者高尖,有的病人还可以看到病理性Q波,这些都是心肌梗塞心电图特点。所以,疑似心肌梗塞患者的疾病诊断目前来说最直接的方法就是根据心电图波形变化来判断。如图2.2所示为在PTB心电数据库中下载的编号为2的心肌梗塞患者的ECG信号图,从图中可以清楚的看出该患者的T波出现了倒置的现象,此病例的ECG图像很清晰,可以直接看出其变化,从而可以直接做出病理判断,但是如果产生像图2.3类似的ECG图像,仅仅只是R波幅度有些高,病理性Q波幅度不高,类似第3号患者这样病理变化特征不是非常明显的患者,就不容易及时的做出相应的诊断,所以需要进一步完善确定心肌梗塞患者ECG数据信号的病理特征,以便更及时有效的做出诊断,为患者提供更快的救治时间。
在这里插入图片描述

图2.2 第2号心肌梗塞患者V5导联ECG信号
Figure 2.2 ECG signal of lead V5 in patients with myocardial infarction No.2
在这里插入图片描述

图2.3 第3号心肌梗塞患者V5导联ECG信号
Figure 2.3 ECG signal of lead V5 in patients with myocardial infarction No.3
2.2 ECG噪声分类
(1)基线漂移噪声:这类噪声是因为人时刻不停的呼吸造成的,它的幅度和频率一直在变化,但是频率值不高,一般为0.05—2Hz。其表示如图2.2所示。
在这里插入图片描述

图2.2受到基线干扰的ECG信号
Figure 2.2 ECG signal disturbed by baseline
(2)工频噪声干扰:由噪声的名称也可以看出,这一类的噪声是因为心电采集仪的工作造成的,可能由于其电源、也可能由于其电线引起,幅度数值较低。其频率值为50Hz或60Hz。其表示如图2.3所示。
在这里插入图片描述

图2.3受到工频干扰的ECG信号
Figure 2.3 ECG signal disturbed by power frequency
(3)高频肌电干扰:与上述噪声类似,由其名称可以得知,是由于肌肉的运动引起的,在检测心电图的时候,人身体的肌肉不可避免的会有一些动作,哪怕仅仅是细微的运动,也会产生一定的噪声,由于肌肉的运动没有规律、运动的肌肉也没有规律,所以这类噪声没有规律,形态各异,其频率最高可达10KHz,持续时间一般可达50ms。其表示如图2.4所示。
在这里插入图片描述

图2.4受到肌电干扰的ECG信号
Fig. 2.4 ECG signal interfered by EMG
2.3深度学习技术理论
随着人工智能的发展,机器学习被广泛应用,但那还死在应用的过程中,随着要求的日益增加,所以又在其基础上衍生出了一种新的学习方法,即深度学习。但是深度学习的概念也不是凭空而来,是源于源于人工神经网络的研究。深度学习技术对于所研究对象的特征能够自动提取,它将底层特征进行组合,形成更加抽象的高层表示类别,以此来发现数据的分布式特征。神经网络算法起源于人的大脑结构,同时伴随着研究模型结构的复杂度发展和大数据以及对计算能力的更大的需求,使得算法也需要进一步增强,而且也在此基础上产生了一些新的、更加强大的新算法。这些算法被广泛应用于图像处理与计算机视觉、自然语言处理以及语音识别中,推动了人工智能技术的发展,我们对于人工智能的追求也更近了一步。
顾名思义,还有浅层学习,但是浅层学习只有单层或者双层结构,然而深度徐熙却包含了多个隐藏层,同时各个隐藏层之间也有联系,它们通过非线性结构进行链接,这样的结构使得无论多么复杂的函数也可以用深度学习来表示,同样,也可以让深度学习比浅层学习学习到更加复杂的图像特征[4],图像中的本质特征也能够让其更加容易的学习到。由此可知,深度学习强调的是特征学习的重要性,它利用多个隐藏层的优势,逐层的进行特征变化的分析,使原有的样本在基础分析的情况下得到的心得特征分析空间,这样就可以将数据内在的特征、内在的联系刻画的更加明显,给后期的分析处理以及做出及时有效的诊断信息提供了准确的信息。
2.4 LSTM网络结构
神经网络的重复模块链的形式是所有的循环神经网络所共有的。在标准的RNN中,该重复模块具有非常简单的结构,例如单个tanh层。LSTM也具有这种链式结构,但是与RNN不同的是它的内部有四个网络层。LSTM的结构如图2.5所示。
在LSTM中,第一阶段是遗忘门,遗忘层决定哪些信息需要从细胞状态中被遗忘;下一阶段是输入门,输入门确定哪些新信息能够被存放到细胞状态中;最后一个阶段是输出门,输出门确定输出什么值。“门”结构是一种让信息选择式通过的方法,包括一个sigmoid神经网络层和一个pointwise乘法操作。
遗忘门通过sigmoid单元来处理决定细胞状态需要丢弃那些信息,它通过查看ht-1和xt信息来输出一个0-1之间的向量,该向量里面的0-1值表示细胞状态Ct-1中的那些信息保留或丢弃多少,0表示不保留,1表示都保留。遗忘门过程如2.6图所示。
下一阶段是输入门,决定给细胞状态添加哪些信息,分为两个步骤:①利用ht-1和xt通过输入门决定添加的信息;②利用ht-1和xt通过一个tanh层得到新的可能会被更新到细胞信息中的候选细胞信息t。输入门过程如图2.7所示。
下一步是更新Ct-1变为新的Ct。规则是通过忘记门选择忘记旧信息的一部分,通过输入门选择添加候选信息t的一部分得到新的信息Ct。过程如图2.8所示。

在这里插入图片描述

图2.5 LSTM网络
Figure 2.5 LSTM network
在这里插入图片描述

图2.6遗忘门过程图示
Figure 2.6 process diagram of forgetting door
在这里插入图片描述

图2.7输入门过程图示
Figure 2.7 input door process diagram
在这里插入图片描述

图2.8输出门过程图示
Figure 2.8 process diagram of output door
2.5相关模型介绍
(1)支持向量机模型。支持向量机模型即SVM,其被提出于1964年,是机器学习算法的一种,在二十世纪九十年代后得到了快速的发展,而且又衍生出了很多改进算法,在人像识别、自然处理语言等人工智能领域得到广泛应用。由于SVM考虑到了经验风险和结构风险最小化,而且其构建的超平面决策边界时的边距最大,使得被测试的样本可以拥有足够的空间,所以具有很大的稳定性,使得其广泛应用于各个领域。
(2)线性回归模型。线性回归是利用数理统计回归分析,来确定两个或者两个以上的变量之间存在的关系,其在数学、金融、经济学等领域的应用非常广泛。它的线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定,是回归分析中第一种经过严格研究并广泛应用的类型。
本文使用了这两种模型来分析心肌梗塞疾病特征,由于线性回归模型拥有SVM所没有的可以直接观察与心肌梗塞疾病相关特征的优势,所以使用这两种模型进行分析。

第3章 心电信号处理算法

3.1 ECG信号降噪处理
前面第2章中已经讲到了ECG信号中存在的噪声,要想能够利用信号提取到相对准确的特征进而进行疾病的精确诊断需要对这些存在的噪声进行降除,进行完毕降噪处理之后的ECG信号才是我们进行疾病诊断的有效信号。
在第1章中讲到了关于基于小波变换的去噪方式,不仅仅能够有效的去除信号中存在的噪声,还能够最大程度的保留信号的准确性。
在由原信号得到小波变换信号时使用的是尺度为6的连续小波变换,小波基函数是墨西哥(Mexican)小波函数,它是高斯(Gauss)函数的二阶导数,因为这个函数的形状非常像墨西哥帽的截面,所以它也常被形象化的称为墨西哥帽函数。相比于其他的小波基函数,墨西哥小波函数对角度的敏感度不是很高,所以它更加适合于来进行特征的提取,同时它还拥有能够提取出相对稳定的极值点或者特征点的优势。它的表达式为:

在上面这个式子中,x代表原信号,y代表经过小波变换之后的信号。图3.1是经过墨西哥小波之后进行极值点的提取,而后就可以得到原信号在经过小波变换之后的信号,如图3.2所示。继而需要再进行信号的预处理,即去噪,使用的是MATLAB中的wavedec,在本文研究中使用的是“[C,L]=wavedec(E,3,‘coif5’)”,也即使用的coif5小波基,对原始信号E进行3层分解,其中C表示各层分量,L表示分量长度,为固定用法。经过去噪之后的信号与原信号的对比如图3.3所示。(心电数据为PTB心电数据库中心肌梗塞编号为1的患者,下文除注明外都使用该患者的心电数据进行分析)。
在这里插入图片描述

图3.1 算法表示
Figure 3.1 algorithm representation
在这里插入图片描述

图3.2小波变换前后对比图
Figure 3.2 comparison before and after wavelet transform
在这里插入图片描述

图3.3小波去噪前后对比
Figure 3.3 comparison before and after wavelet denoising
3.2 ECG信号特征提取
去噪完成之后为更好的进行疾病的识别需要对数据图像进行特征提取。在ECG图像波形中,各个波李QRS波群的特征最明显、而且能量最高,所以最容易被检测出来的也是它,而且在目前的对心电图波形研究中的检测手段中都是先将QRS波群检测出来,在心电信号中将其定位到,然后以此为基础再去检测P波、T波等。
对于QRS波群的识别方法有很多,目前最常用的方法有:差分阈值法[15]、滤波器法[16]、模版匹配法[17]、小波分析法[18,19]、主成份分析[20]等。
在本文的研究中主要采用小波分析发进行特征的提取。首先是R波的检测,由于R波的幅度和斜率相对于其他波形来说是比较大的,所以首先对R波进行检测,检测完毕后Q波和S波也可以顺利的被检测到。
(1)R波的检测提取。
在经过小波变换后进行固定差分阈值分析的效果比较好,所以本文采用此方法进行R波的检测提取。首先对信号进行去噪处理,去噪结束之后进行小波变换,尺度为n,然后对所有的极值点进行检测,而且需要按照幅值进行排序。阈值大小的取定根据幅值大小确定,具体为极大值与极小值差的r%,阈值即为临界值,如果高于此临界值,则先预判为R波。结束后需要进行R波的错误检测的排除,这个目的的达到需要对RR间期进行检测,如果RR间期小于之前的阈值,就要进行两个R波之间幅值的比较,其中幅值更高的确定为R波,另一个则去除。都进行完毕之后需要进行R波的局部微校正[6]。
经过上节中叙述的墨西哥小波变换之后,提取出来极值点,同时需要判定阈值,确定阈值的目的是需要看一下提取的极值点是否大于阈值,如果大于则需要进一步确定这个值是否是在其前后10个点的范围内的最大值,如果是的话计算这两个峰之间的距离,如果不是则需要取该范围内的模最大点,并且需要确定两点之间的时间是不是小于400ms,如果大于则为R波的峰点,如果小于的话,则需要再取两个R波中模较大者,然后确定为R波的峰点。205号健康者的R波提取过程如图3.4所示。
在这里插入图片描述

图3.4 R波提取过程
Figure 3.4 R wave extraction process
在R波提取过程中,通过试验分析,小波变换的尺度 n需要设置为6,差分阈值的系数取40%,才能达到更好的效果。在进行对R波的错误检测排除时,为达到更好的效果,RR间期的阈值需要设定为0.4s,也即如果两个RR间期比0.4s小,就会视为错误检测到了一个R波。原因是人的心率范围为60-100次/min,最低不会低于40,最高不会高于120,也就是说RR间期最短不会低于0.5s。但是又考虑到由于病症的发生,心率有可能会有不齐的情况,RR间期有可能会由于这样的原因变段,所以将阈值设定为0.4s。后来的研究工作中,经过一定心电数据的试验,证明这个阈值的设定符合规范,同时它的可用性和适用性也比较高,最后,为了更加准确的取定R波的位置,需要将检测到的R波前后各取10ms的数据进行大小比较排序,将其中的模极大值坐标作为最后的R波位置。
(2)Q波和S波的检测提取。
当检测完R波之后,Q波和S波都可以进行检测。首先对可能是Q波和S波的位置进行预判断,具体为在以R波波峰为中心的位置分别向前向后寻找第一个模极大值,为保证点的确定的准确性,需要对该点进行两次位置校正,以便得到最后的Q点或S点。这两种波的提取和校正方法类似,以Q波为例:首先在预判点位置向前,取20ms之前处的数据,设为(x1,y1),然后将该点与R波峰点(设为(x2,y2))之间连一条直线,然后计算这之间每个点距离直线的距离,距离最远的点则为第一次校正后的Q点。直线的公式可表示为:

点到直线的距离d公式为:

提取出Q波和S波之后,就可以很方便的找到Q波的起点和S波的终点,就是在Q点前和S点后100ms之内寻找最近的极值点,作为QRS复合波的起点和终点。QRS复合波的时限就是起点与终点之间的时间差,R波幅值为R波峰点相对于QRS起点的幅值差。
图3.5为第205号健康对照者的Q波、R波、S波在原信号中的定位,图3.6为第1号心肌梗塞患者的Q波、R波、S波在去噪之后信号中的定位。
在这里插入图片描述

图3.5 健康对照者QRS波定位
Figure 3.5 QRS wave location in healthy controls
在这里插入图片描述

图3.6 心肌梗塞患者QRS波定位
Figure 3.6 QRS wave localization in patients with myocardial infarction
(3)P波和T波的检测提取
位于QRS波群的前面和后面,而且幅度值和频率值都不如QRS波群大的波是P波和T波,要想对它们进行精确的检测,工作是比较困难的,所以这两种波都在QRS波检测文笔之后再进行。但是存在一个不可忽略的因素,就是这两种波不仅仅幅值小,而且它们的变化不定,具有多样性和复杂性的特点,所以它的提取方法对于健康人群的ECG信号来说效果还算可以,但是但凡ECG信号为心血管疾病患者的信号,这两种波的提取还达不到令人满意的效果。在本文研究中,采用的事斜率阈值法对P波和T波进行检测提取,首先需要在特定范围里寻找模极大值点,然后计算其在前后一定范围内各点之间的斜率的模,选出最大值,当阈值比这个最大值小的时候,则为P波或者T波的峰点,那么对应基线那一点就为P波的起点和终点,同时P波的幅值和时限也就可以计算出来了;而当阈值大于最大值时,则认为该ECG信号没有P波,P波幅值和时限都为0。P波和T波检测提取如图所示:
在这里插入图片描述

图3.5 P波、T波定位
Figure 3.5 P-wave and T-wave positioning
检测提取出对于疾病诊断有效的ECG信号之后便可以继续开展下一步的工作,即建立相关模型,为疾病的准确诊断奠定基础。

第4章 数据信号分类识别算法

4.1数据收集整理分析
本文中所使用的额新店数据都来自于PTB心电数据库,它是Physiobank众多数据库中的一个数据库。该数据库是由德国柏林大学本杰明·富兰克林大学心脏病学系教授从健康志愿者和患有不同心脏病的患者中收集的。包括心肌梗塞、心率衰竭、心律失常、心肌肥大、心肌炎等心血管疾病共290位受试者的549条记录。每个信号都有14个ECG信号、1个呼吸信号、1个线电压信号。本文研究对象为心肌梗塞患者和健康对照者的V5导联信号。因为V5导联位于胸部距离心脏最近的位置,对于诊断心肌梗塞ECG信号特征最为明显。数据统计分析如表4.1所示。数据分析完毕后为进行模型的建立,需要用SPSS工具数据进行相关性分析,数据相关性分析结果如表4.2所示。
首先利用可视化工具Physiobank ATM将数据下载并保存为MATLAB的可读取文件,即.mat格式,随后通过前文叙述的步骤对于下载的数据进行去噪,包括基线漂移噪声、工频噪声干扰和高频肌电干扰三种噪声的去除;去完成之后就对数据信号进行特征提取。
表4.1数据分析
Table 4.1 data analysis
相关参数 心肌梗塞疾病患者 健康对照者
R波幅
T波幅
P波幅
T波时限
P波时限
QRS时限
RR间期
QT间期
PR间期
ST段偏移 38例出现抬高或者压低 无
早搏 21例出现早搏现象 无

表4.2 数据相关性分析
Table 4.2 data correlation analysis
相关参数 相关性 显著值
R波幅 -0.593 0.002
T波幅 -0.706 0.001
P波幅 -0.377 0.006
T波时限 0.033 0.603
P波时限 -0.049 0.439
QRS时限 0.017 0.787
RR间期 -0.195 0.018
QT间期 0.619 0.002
PR间期 -0.490 0.012
ST段偏移 0.222 0.013
早搏 0.245 0.011
其中,R波幅、T波幅、 P波幅、QT间期在0.01水平上显著相关,RR间期、PR间期、ST段偏移、早搏都是在0.05水平上显著相关,而剩余的P波时限、T波时限、QRS时限都没有显著相关性,所以选择具有相关性的8个数据进行模型建立的数据源。
4.2心肌梗塞疾病模型建立与识别
4.2.1支持向量机模型
支持向量机(SVM)模型具有非常好的稳定性,因为它考虑了经验风险和结构风险最小化。在MATLAB环境下,Libsvm工具箱可以进行广泛使用,这样就方便了SVM模型的建立和使用。可以在Windows下执行的文件也不需要用户自己去进行编译,Libsvm工具箱已经将其编译好,而且更加人性化的是它也提供源代码,这样更加方便了SVM模型的建立。由于K-CV(K-fold Cross Validation)法是经常在此类研究中使用的,所以本文也采用这个方法。这个方法需要首先将所需要研究的数据均分为K(K>2)组,而且要把其中的一组拿出来作为验证集剩余的K-1组作为训练集,对模型进行训练。这样的方法可以得到K个分类器模型,为保证分类器的性能公平、可信度更高,选用这些模型分类准确率的平均值作为指标。K-CV的交叉验证和参数选择过程通过MATLAB平台实现,最终得到的0.758和4为c和g的最优值。最优参数选择过程如图4.1所示。
在这里插入图片描述

图4.1最优参数选取过程
Figure 4.1 optimal parameter selection process
4.2.2线性回归模型
本文使用数据统计分析软件SPSS进行线性回归模型的建立,上文中选取的8个变量为自变量,因变量为GROUP,选择“输入”作为回归方法,用回归系数来表示每一个自变量与因变量的关系,用Sig表示系数和0之间差异的显著性,线性回归模型可以用表达式表示为:

VR是指R波的幅值,VP是指P波的幅值,VT是指T波的幅值,TRR是指RR间期,TQT是指QT间期,TPR是指PR间期,VST是指ST段的电位偏移值,NP是指是否出现早搏(1代表出现,0代表不出现)。
表4.3线性回归分析
Table 4.3 linear regression analysis
自变量 回归系数 Sig 回归系数95%的置信空间
上限 下限
VP -2.181 0.007 -3.746 -0.616
VR -0.581 0.000 -0.777 -0.385
VT -0.890 0.000 -1.178 -0.601
TRR -0.001 0.402 -0.001 0.000
TQR 0.006 0.000 0.004 0.007
TPR -0.007 0.000 -0.010 -0.004
|VST| 0.063 0.025 -1.244 1.369
NP 0.107 0.042 -0.144 0.359
常量 0.296 0.531 -0.635 1.228
4.2.3心肌梗塞疾病识别
本文研究不仅建立SVM模型,还使用SPSS工具建立了线性回归模型,两者在配合使用下心肌梗塞疾病的识别判定准确度更高,经过研究线性回归模型的准确率为89.5%,误判健康者有11例,心肌梗塞患者5例;SVM准确率为96%,只有1例误判为健康者,从数据中可以看出SVM模型的准确率更高一些,但是也存在不足的地方,不足之处为与心肌梗塞疾病的病理结果参数相关的特征美誉办法通过SVM模型观察出来,但是线性回归模型正好可以解决这个问题,所以使用这两种模型进行分析,可以优势互补,更好的为疾病的识别提供数据。
从线性回归模型的回归系数中可以看出,R波幅值、P波幅值以及R波幅值的回归系数为负值,表示随着数值的降低,被诊断为心肌梗塞疾病的几率更大,因此说明心肌梗塞患者的R波、P波的幅值比较低,T波更加明显(而且还会有出现T波倒置的患者,例如前文中讲述过的编号为1的患者),心肌梗塞病人也有可能会由于心肌活性下降甚至坏死导致信号的传导出现滞后或阻塞的问题,这样会导致患者整体ECG信号的能量很弱。
其次,RR间期与PR间期的系数为负数,说明心率越高,RR间期越小,心肌梗塞的概率也就越大;PR间期与RR间期关系为正比,所以特征也是这样。QT间期系数为正,说明QT间期越长被诊断为心肌梗塞疾病的概率越大。
再次,ST段的电位偏移和早搏的系数为正,说明该特征的出现与心肌梗塞疾病发生的概率是正比。
所以从线性回归模型的数据分析中可以得到的结果是:显示有心率过快、早搏、R波及P波振幅微弱、T波倒置、QT时限过长、ST段电位偏移超过0.1mV特征的ECG图像是心肌梗塞疾病发生的特征标志,由此标志可以诊断出该ECG信号图为心肌梗塞患者的心电信号图,可以准确的进行心肌梗塞疾病的识别。

结语

心脏作为人体内最重要的器官,它的健康才能带来更好的生活,倘若出现一点问题都会对人体健康产生莫大的威胁。心肌梗塞是常见的心血管疾病,心肌梗塞发生时,如果血管堵塞30分钟以上就会发生心肌坏死,所以心肌梗塞疾病越早治疗越好。而心脏病目前的最佳诊断方式就是通过心电图的波形状态来进行判别,但是在目前医疗手段上,通过心电图来进行疾病的诊断需要专业医师进行,所以通过计算机进行辅助医疗诊断显得尤为重要。本文通过分析心肌梗塞患者和健康对照者的心电信号,通过模型检测提取出了判断心肌梗塞的特征,为该疾病的准确、及时诊断提供了参考。
本文主要完成了对心电信号进行提取、小波去噪以及特征提取;建立了SVM模型以及起辅助作用的线性回归模型,根据模型分析拥有心率过快、早搏、R波及P波振幅微弱、T波倒置、QT时限过长、ST段电位偏移等特征的ECG图像可能是心肌梗塞疾病发生的特征标志。本文的研究虽然有了一定的意义,但是还存在一些局限性:信号的处理方式上,对于其他类别的信号是否适用还需要进行进一步的研究确定;对于心电信号的特征提取、检测等都是在信号预处理(即去噪)之后进行,能否进行实时、动态的提取检测还需要对算法进行进一步的改进;支持向量机模型虽然比线性回归模型的准确率高,但是其在病理方面的直观描述存在局限性,所以模型的适用、实用性需要进一步进行研究。
现代社会发展进程之快、人类生活水平提高之快,都需要医疗水平相应得到更进一步的提高,而伴随着计算机技术的进一步发展,计算机辅助医疗的发展步伐也进一步提高,所以使用计算机辅助医疗,应用计算机进行对疾病及时、准确的诊断是时代之需、人类之需。但是心电信号的种类、数据繁多,因此计算机辅助医疗还需要与临床进行有效结合,从而能够更好的将研究应用到实际生活中,为心脏病、心肌梗塞疾病做加有效的分析、对患者提供更大的帮助。

  • 20
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: ECG分析是一种用于检测心脏疾病的方法,而基于深度学习ECG心律失常分类则是一种新兴的技术。这种技术利用深度学习算法对ECG数据进行分析和分类,以便更准确地诊断心脏疾病。这种技术的入门需要掌握深度学习的基本原理和ECG数据的基本知识,同时需要了解常见的心律失常类型及其特征。通过学习和实践,可以逐步掌握这种技术,并在实际应用中取得良好的效果。 ### 回答2: ECG分析是指通过对心电图(ECG)数据进行处理和分析,得出心脏的生理状况和心律失常的情况。而基于深度学习ECG心律失常分类则是一种新兴的、快速而准确的心律失常诊断方法,可以在短时间内对不同类型的心律失常进行自动识别和分类。下面将介绍ECG分析中使用深度学习技术的基本原理。 ECG信号是一种时间序列信号,包含不同的波形特征,例如P波、QRS波和T波等,这些波形特征反映了心跳时心肌的电生理变化。基于深度学习ECG心律失常分类可以分为三个步骤: 第一步是数据预处理,包括数据清洗、信噪比提高等,这是保证模型准确性的关键步骤。 第二步是特征提取,这是深度学习方法的核心。传统的特征提取方法是基于图像处理、信号处理等领域,需要大量的人工设计。而基于深度学习的特征提取则是通过网络学习参数,自动地找到最能区分不同心律失常的特征。常见的网络结构包括卷积神经网络(CNN)和循环神经网络(RNN)等。 第三步是模型训练和测试。通常,我们将数据集划分为训练集、验证集和测试集三部分,用训练集来训练模型,用验证集来选择最优的模型超参数,用测试集来测试模型的准确性。模型的准确性可以用准确率、召回率、F1值等指标进行评价。 总之,基于深度学习ECG心律失常分类具有高效、准确、自动化等优势,可以大大提高ECG信号的处理速度和心律失常的诊断准确性,对心血管疾病的早期预防和治疗具有重要意义。 ### 回答3: ECG(电生理图)是评估心脏健康状况的重要工具。ECG在医生的指导下具有高精度和可靠性,但是ECG检查的数量庞大,医生需要花费大量时间和精力来进行ECG分析。深度学习技术已经被应用于ECG分析中,以实现较高的自动化程度。 基于深度学习ECG心律失常分类技术旨在通过机器学习来处理ECG数据,以自动分类心律失常。常见的ECG心律失常包括心房颤动、心室颤动、心房扑动、快速地、慢速的、心动过缓、心动过速等等。 ECG数据的分析可以通过传统的机器学习方法实现,但这种方法的准确度和性能通常较低。深度学习技术可以在更高水平上对ECG数据进行分析,从而实现更准确、更可靠的分类。 基于深度学习ECG心律失常分类技术通常需要三个关键组件: 1. 数据集:深度学习模型需要大量的数据来进行训练。ECG数据集应具有多样性,因为ECG数据在不同人群中可能存在差异。 2. 深度学习模型:深度学习模型是ECG分类的核心。现在有许多ECG分类模型可以使用,例如卷积神经网络(CNN)和递归神经网络(RNN)。 3. 训练和测试:训练和测试是深度学习模型的关键步骤。在训练期间,模型从数据集中学习数据的特征和模式。测试过程评估训练后的模型的性能,以确定它在分类ECG心律失常方面的精度和可靠性。 总之,基于深度学习ECG心律失常分类技术通过自动化分类ECG数据,可以帮助医生更快速、准确地诊断ECG心律失常。尽管仍需更多的研究和开发,但这项技术的潜力很大,可以提高医疗保健的效率和质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_1406299528

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值