图像处理
文章平均质量分 67
watersink
你怎么对这个世界,世界就会还你一个怎么样的它
展开
-
一种特定场景去除高光算法
成功的人生在于追求「完整」而不是「完美」 ----乔丹·皮特森算法思路:1、求取源图I的平均灰度,并记录rows和cols;2、按照一定大小,分为N*M个方块,求出每块的平均值,得到子块的亮度矩阵D;3、用矩阵D的每个元素减去源图的平均灰度,得到子块的亮度差值矩阵E;4、通过插值算法,将矩阵E差值成与源图一样大小的亮度分布矩阵R;5、得到矫正后的图像result=I-R;应用场景:光照不均匀的整体色泽一样的物体,比如工业零件,ocr场景。代码...原创 2021-12-28 14:47:12 · 3521 阅读 · 0 评论 -
颜色迁移(reinhard VS welsh)
reinhard算法:Color Transfer between Images,作者Erik Reinhardwelsh算法:Transferring Color to Greyscale Images,作者Tomihisa Welsh应用场景:人像图换肤色,风景图颜色迁移出发点:RGB三通道有很强的关联性,而做颜色的改变同时恰当地改变三通道比较困难。 需要寻找三通道互不相关的也就是正交的颜色空间,作者想到了Ruderman等人提出的lαβ颜色空间。三个轴向正交意味...原创 2021-12-07 12:00:13 · 5901 阅读 · 0 评论 -
空间变换网络STN
出自论文Spatial Transformer NetworksInsight:文章提出的STN的作用类似于传统的矫正的作用。比如人脸识别中,需要先对检测的图片进行关键点检测,然后使用关键点来进行对齐操作。但是这样的一个过程是需要额外进行处理的。但是有了STN后,检测完的人脸,直接就可以做对齐操作。关键的一点就是这个矫正过程是可以进行梯度传导的。想象一下,人脸检测完了,直接使用R原创 2018-03-10 19:20:40 · 28290 阅读 · 6 评论 -
从0到1,反距离加权IDW(Inverse Distance Weighted Interpolation) 插值变形算法
论文:Image Warping with Scattered Image Warping with Scattered Data Interpolation算法思路:算法优缺点:优点:实现简单,cpu实现,gpu实现都友好缺点:速度与点的个数,图片长,宽,这3个指标成正比,点个数越多,速度越慢,图片越大速度越慢。如果点太少,形变会不平滑。应用场景:大脸,瘦脸,大眼,等任何形变场景基本实现:好处,更容易结合公式看清原理,缺点,速度很慢。class IDW(o原创 2021-11-22 20:49:16 · 3647 阅读 · 0 评论 -
瘦脸之液化算法
论文:Interactive Image Warping(1993年Andreas Gustafsson)算法思路:假设当前点为(x,y),手动指定变形区域的中心点为C(cx,cy),变形区域半径为r,手动调整变形终点(从中心点到某个位置M)为M(mx,my),变形程度为strength,当前点对应变形后的目标位置为U。变形规律如下,圆内所有像素均沿着变形向量的方向发生偏移 距离圆心越近,变形程度越大 距离圆周越近,变形程度越小,当像素点位于圆周时,该像素不.原创 2021-11-23 19:33:18 · 5384 阅读 · 3 评论 -
大眼之膨胀算法
论文:Interactive Image Warping(1993年Andreas Gustafsson)算法思路:以眼睛中心为中心点,对眼睛区域向外放大,就实现了大眼的效果。大眼的基本公式如下,假设眼睛中心点为O(x,y),大眼区域半径为Radius,当前点位为A(x1,y1),对其进行改进,加入大眼程度控制变量Intensity,其中Intensity的取值范围为0~100。其中,dis表示AO的欧式距离,k表示缩放比例因子,k0表示大眼程度,xd,yd表示A点经过大..原创 2021-11-24 15:27:35 · 5224 阅读 · 6 评论 -
传统图像处理之皮肤区域检测
1.RGB空间肤色在RGB模型下的范围基本满足以下约束:在均匀光照下应满足以下判别式:R>95 AND G>40 B>20 AND MAX(R,G,B)-MIN(R,G,B)>15 AND ABS(R-G)>15 AND R>G AND R>B在侧光拍摄环境下:R>220 AND G>210 AND B>170 AND ABS(R-G)<=15 AND R>B AND G>B代码:def skin原创 2021-12-01 14:52:33 · 3740 阅读 · 0 评论