华为atlas
文章平均质量分 65
watersink
你怎么对这个世界,世界就会还你一个怎么样的它
展开
-
基于华为atlas环境下的OpenPose人体关键点检测的人员跨越、坐立检测
然后基于该算法将上面的数据集跑一遍,得到所有数据的人体关键点和类别。基于OpenPose模型将数据集跑一遍,得到关键点坐标数据集,数据集保存在txt里面,每一行格式为(图片名 类别 关键点xy坐标),如果身体遮挡没有关键点的使用-1代替。(2)本质来看,跨越、坐立还是一个时序问题,基于时序的思路解答这个问题效果应该是会高一个量级的。关键点模型也是直接使用的开源的模型,没有在自己私有数据上微调,等等问题都会对最终的结果有影响。收集数据集,数据集中包含3种类型的数据,分别是跨越、坐立、其他(站立、睡着等等)。原创 2024-10-29 15:53:43 · 448 阅读 · 0 评论 -
AI开发训练平台功能梳理
工作计划流程图原创 2023-12-15 16:57:05 · 693 阅读 · 0 评论 -
基于atlas环境下YOLOV7的睡岗识别
主要基于华为的官方例子,里面修改了原始代码中某些库不支持的问题、解决了模型转化过程中的一些问题,发现了ACL不支持多线程的问题。本来自己是想做一个grpc的架构的,可是实际做的过程中发现华为的AclLiteModel实现的很差,对于进程、线程这些非常不友好,必须得是一个进程,同样的上下文才可以得到正确的推理结果。这里对比的训练的yolov7、yolov7-tiny两个模型,从精度上的明显差距,最终选择了yolov7模型作为最终模型。B站找一段睡觉的视频下载下来,这里实用you-get工具,原创 2024-09-20 16:00:00 · 576 阅读 · 0 评论 -
基于华为atlas的皮带跑偏、空载、堆煤、启停探索
写这篇的时候,想起当年第一次接触atlas还是在京东的一次aicon的会议上,其实那时觉得这东西挺新的,还有自己的IDE,其实自己也没用过。整体感觉模型这块不算复杂,唯一的麻烦的地方就是皮带、煤、煤块这几个的分割是属于多标签分割问题,就是说一个像素可以属于其中的一个也可以是属于其中的几个。训练过程采用累进训练的方式,我是一个一个目标递进训练的,这样可以获取更好的精度,具体的先训练出背景、皮带、左右托锟的模型,再在此基础上迭代煤的模型,最后迭代煤块的模型。是故无贵无贱,无长无少,道之所存,师之所存也。原创 2024-08-14 17:49:33 · 852 阅读 · 1 评论 -
基于华为atlas下的yolov5+BoT-SORT/ByteTrack煤矿箕斗状态识别大探索
这里说明以下,为什么不整体都选择yolov8呢,v8无疑是比v5优秀的,但是atlas这块经过不断尝试没有过去,所以只能选择v5。那为什么跟踪模型选择yolov8呢,其实我这里要做的是实时视频的处理,我也不想使用deepsort那种带识别模型的笨重型跟踪框架,看了yolov8的代码,觉得相当可以,就选择了yolov8中的跟踪。原本我以为自己的水平是扣不出这块跟踪代码的,毕竟是网上大波大佬修改过的代码。连续加班了2个晚上后,终于扣出来了,过程是曲折的,结果是美好的。模型转化,pt模型转化为onnx,原创 2024-08-13 16:27:08 · 591 阅读 · 0 评论 -
基于华为atlas的unet分割模型探索
使用工具Netron查看模型结构,确定模型输入节点名称为input.1,输出节点名称为/outc/conv/Conv。华为atlas的参考案例细节不到位,步骤缺失较多,摸索困难,代码写法较差,信创化道路任重而道远。模型输入为572*572*3,输出为572*572*2。分割目标分别为,0:背景,1:汽车。Unet模型使用官方基于kaggle。原创 2024-03-05 16:58:17 · 763 阅读 · 2 评论 -
基于华为atlas的分类模型实战
修改mobilenetv3.py中网络结构,模型选用MobileNetV3_Small模型,网络输出节点增加softmax层,将原始的return self.linear4(out)修改为return F.softmax(self.linear4(out), dim=-1)分类模型选用基于imagenet训练的MobileNetV3模型,分类类别为1000类。模型的输出node增加softmax成功。模型的输入node名称为input.1。实现转化onnx代码,原创 2024-02-27 16:29:02 · 1031 阅读 · 4 评论 -
华为atlas300安装教程
【代码】华为atlas300安装教程。原创 2023-12-20 11:52:01 · 1072 阅读 · 0 评论 -
基于华为atlas的烟火检测实战
实现信创化的docker file用于生成docker image,初始系统选择openeuler-20.09系统,docker file文件内容如下,将yolov5的best.onnx模型拷贝到当前目录,进行onnx转化为om,输出yolov5_add_bs1_fp16.om。基于flask实现烟火检测算法的http服务,然后实现视频解码-AI识别-结果绘制于视频上进行视频编码的业务代码。最终效果如下,上边为业务代码、左下角为流媒体引擎代码、右下角为AI服务代码、中间为AI实时视频识别效果。原创 2023-12-20 11:17:33 · 1176 阅读 · 0 评论