人脸年龄,性别,颜值
文章平均质量分 92
watersink
你怎么对这个世界,世界就会还你一个怎么样的它
展开
-
人脸属性识别的思考
目录数据,数据多人类任务网络设计:人脸识别vs表情识别:多任务训练问题:1.多任务训练过程中的此消彼长2.类别不平衡问题3.难易学习问题4.年龄,分类替代回归5.表情识别界线模糊问题6.eyeglass(yes,no),darkglass(yes,no)7.性别精度不足8.人脸关键点检测和人脸属性的适配问题9.左右眼问题时间是金钱,细节是魔鬼:数据,数据CelebA:(人脸属性) http://mmlab.ie.cuhk.edu.hk/pro.原创 2021-11-24 20:47:43 · 2151 阅读 · 10 评论 -
年龄识别之ssrnet
论文:SSR-Net: A Compact Soft Stagewise Regression Network for Age EstimationGithub:https://github.com/shamangary/SSR-Net论文提出了多stage结构的,紧凑,轻量化的年龄识别网络结构SSR-Net(Soft Stagewise Regression Network)。其中,多stage策略(multi-stage strategy),动态区间策略(dynamic range)...原创 2020-11-24 15:59:36 · 2015 阅读 · 0 评论 -
人脸表情识别调研
人脸表情识别调研论文:Deep Facial ExpressionRecognition: A Survey资源:http://www.pris.net.cn/introduction/teacher/dengweihong北邮模式识别实验室,邓伟洪人脸表情识别facial expression recognition (FER),主要面临2大挑战问题,缺乏高效的数据导致的过拟合 表情相关变化,比如,关照,人脸姿态,不同人脸之间的差异。...原创 2020-11-13 11:14:15 · 771 阅读 · 0 评论 -
表情识别之scn
论文:Suppressing Uncertainties for Large-Scale FacialExpression RecognitionGithub:https://github.com/kaiwang960112/Self-Cure-NetworkCVPR 2020,siat乔宇老师组的作品。Self-Cure Network (SCN),本质就是可以实现自我治愈功能的网络结构。We expect the network can be cured by itself w..原创 2020-10-29 19:44:28 · 2072 阅读 · 4 评论 -
年龄识别之AgeNet
论文:AgeNet: Deeply Learned Regressor and Classifier forRobust Apparent Age EstimationICCV2015论文提出了一种基于人脸的年龄识别网络AgeNet。该网络同时基于分类和回归对年龄进行预测,然后将2个分支的特征进行融合,得到更好的预测结果。并且在ChaLearn 2015 Apparent Age Competition 取得了最好的结果。主要贡献:提出了端到端的年龄识别方案AgeNet,并...原创 2020-09-15 20:58:17 · 2210 阅读 · 0 评论 -
基于 CNN的年龄和性别检测
自2012年深度学习火起来后,AlexNet,vgg16,vgg19,gooGleNet,caffeNet,faster RCNN等,各种模型层出不群,颇有文艺复兴时的形态。在各种顶会论文中,对年龄和性别的检测的论文还是比较少的。而本文将要讲解的是2015年的一篇cvpr,Age and Gender Classification using Convolutional Neural Netw...原创 2016-09-06 22:45:02 · 13889 阅读 · 21 评论 -
基于手工打造的卷积CNN的性别识别
运行环境:VS2008人脸检测库:于仕琪老师的人脸检测库 程序解析:程序主要实现了3个卷积层的操作,通过训练获得这3个卷积层的权值。预测的时候就根据这些权值进行相应的分类操作。前向传播: int CLayer::FeedForward(double* pInput, bool bDisp){ if (!pInput) { return -1; } m_...原创 2016-09-20 12:39:19 · 1577 阅读 · 0 评论 -
人脸属性预测之书山有路
这里主要通过对人脸的分析,得出,年龄,性别,种族,表情,魅力值等属性。所有的这些问题中,有分类问题也有回归问题,准确的说是一个多标签的分类+回归问题。 对于多标签问题,对于caffe有2种处理思路,一种是使用HDF5格式,另一种就是修改caffe源码。 1.数据准备这里同时进行2种方式的说明。(1)修改源码,主要修改cafferoot/tools/convert_...原创 2017-06-08 18:24:12 · 2003 阅读 · 3 评论 -
基于多输出顺序回归的年龄识别
源自2016 cvpr,Ordinal Regression with Multiple Output CNN for Age Estimation ,文章主要2个贡献:(1)将传统的年龄回归问题转化为多个顺序2分类问题文章网络的整体结构如下图所示: 在经过3个卷积模块后,接入一个全连接层,然后输出K-1个通道的2分类任务。例如这里,Task1预测年龄是否大于1,Tas...原创 2018-03-06 16:40:17 · 4872 阅读 · 0 评论 -
年龄识别数据集IMDB-WIKI
ICCV,2015, DEX: Deep EXpectation of apparent age from a single image文章3个insight:(1)分享了IMDB-WIKI数据集,包含524230张从IMDB 和Wikipedia爬取的名人数据图片。具体数据分布如下图: (2)一个新颖的化回归为分类的年龄算法。本质就是在0-100之间的101类分类后,对...原创 2018-03-21 09:02:16 · 10965 阅读 · 1 评论