如何利用AIOps实现故障预测与故障自愈?

点击进入运维管理资料库

一、AIOps的基本概念与重要性

97a1e0bf79431cb7c80a091ee996673d.jpeg

(一)AIOps的定义与发展

在当今数字化时代,企业的IT运维管理面临着前所未有的挑战与机遇,而AIOps(人工智能运维)作为新一代的IT运维管理模式应运而生。AIOps,简单来说,就是将人工智能、大数据分析等多种先进技术融合应用于IT运维领域。

回顾其发展历程,“AIOps”这一概念最早是由Gartner在2016年提出的,但其实相关实践在那之前或许就已悄然展开,处于人工智能研究前沿的一些公司可能早就应用算法流程来协助其内部的运维工作了。随着时间的推移,IT基础设施变得越发复杂,依赖于复杂的部署、多云架构以及海量的数据,传统依靠人力去应对这些复杂性的方式逐渐显得力不从心,这就促使整个行业更加积极地探索利用人工智能来解决运维难题,AIOps也从曾经的少数探索,迅速朝着成为现代IT环境中必不可少的工具这一方向发展。

如今,在数字化转型的大背景下,AIOps更是展现出了其重要意义。它能够对来自多个数据源的数据进行实时分析,比如基础设施产生的数据、应用程序运行数据以及日志信息等,通过挖掘其中的模式、检测异常情况,进而提前预测潜在的问题。这就好比为企业的IT系统配备了一个“智能管家”,让IT团队能够变被动为主动,在问题还未真正爆发之前就采取相应的预防措施,极大地提高了系统的可用性和性能表现,也有力地保障了企业业务的顺畅运行。同时,它还能自动化关联各种事件和事故,帮助IT团队更快地诊断问题根源,减少识别和解决问题所耗费的时间,提升整个运维管理的效率,为企业在激烈的市场竞争中赢得更多优势。

(二)传统运维的痛点与AIOps的优势

传统运维在实际工作中存在诸多痛点。首先,在面对系统故障时,往往极度依赖人工操作,需要投入大量的人力去进行巡检、排查等工作,耗费的时间成本很高。比如在一个规模较大的数据中心,如果仅靠人工去逐个检查设备、查看日志来发现故障,那将会是一个非常漫长的过程,而且很可能在这个过程中故障已经对业务产生了严重影响。

其次,定位故障的根因困难重重。传统运维中,数据大多分散在各个不同的系统和工具中,缺乏有效的整合与关联分析,当出现故障时,IT人员需要从海量且繁杂的数据里去寻找线索,梳理各种可能的原因,这犹如大海捞针,很难快速准确地判断出到底是哪个环节出了问题。另外,传统运维大多是在故障发生后才做出响应,属于一种被动式的管理模式,难以做到提前预防故障的发生。

与之相比,AIOps则有着显著的优势。它借助人工智能和机器学习算法,能够对海量的运维数据进行深度分析。例如,通过对历史数据的学习和对实时数据的持续监测,可以自动识别出数据中的异常模式,当出现偏离正常运行状态的情况时,迅速发出预警,提前告知IT团队潜在的故障风险,让团队有时间去提前处理,避免故障真正发生或者减小故障带来的影响范围,实现从被动管理到主动预防,甚至是预期管理的转变。

同时,AIOps可以整合来自不同系统、不同来源的数据,将它们统一到一个平台或者视图中,便于IT运营人员进行综合全面的分析。这样一来,当需要查找故障根因时,就不再需要在各个孤立的数据“孤岛”中艰难探索,而是可以通过关联分析等手段,快速准确地定位到问题的根源所在。而且,很多重复性的运维任务,像一些常规的监控、简单的故障排查等,AIOps都可以实现自动化处理,减少人工干预,大大提高了运维的效率与质量,使得IT团队能够将更多的精力放在更具战略性、更能为企业创造价值的工作上。比如,一些大型企业在引入AIOps后,平均故障修复时间(MTTR)大幅缩短,原本可能需要花费数小时甚至更长时间去解决的故障,现在能够在很短时间内定位并修复,极大地提升了企业IT系统的稳定性和业务的连续性。

二、故障预测的实现方式

(一)数据分析和建模

在利用AIOps实现故障预测的过程中,数据分析和建模起着基础性且关键的作用。

首先,AIOps具备强大的数据收集能力,能够整合来自系统日志、性能指标、用户行为等多源的数据。系统日志记录着系统运行过程中的各种事件信息,犹如一本详细的“日记”,涵盖了操作记录、错误提示等关键内容;性能指标则像是系统的“体检表”,包含了诸如CPU使用率、内存占用量、网络带宽等参数,直观反映系统各部分的运行状态;用户行为数据则从用户操作层面提供了不同使用场景下系统的负载和响应情况等信息。

接着,运用机器学习算法对这些收集来的历史数据进行深度分析建模。例如,通过监督学习算法,可以基于已标记的历史故障数据和对应的系统状态数据进行训练,构建出故障预测模型。像在电商系统中,如果有历史记录表明当数据库某个表的查询效率逐渐下降,且同时内存使用率持续走高、服务器响应时间变长等多种特征出现时,曾发生过系统故障,那么机器学习模型就能学习到这样的模式。当后续再次监测到类似的数据特征组合时,便可以预测可能发生的故障。

再比如,无监督学习算法可以帮助挖掘潜在的故障模式,从海量正常运行状态的数据中发现那些偏离常规的数据聚集情况,也就是异常模式。比如通过聚类算法对服务器的各项性能指标进行聚类分析,当出现某个服务器的指标数据脱离了正常聚类范围时,就可能预示着即将发生故障。

通过这样的数据分析和建模方式,AIOps可以充分挖掘数据背后隐藏的信息,将看似杂乱无章的数据转化为有价值的故障预测依据,从而实现对可能发生故障的提前预判,为后续的主动运维提供有力支撑。

(二)实时监控和分析

AIOps的实时监控和分析能力,让其能够时刻把控系统和应用程序的运行状态,成为故障预测与预防的又一重要保障。

它可以实时地收集来自各个关键环节的数据,无论是服务器的实时性能数据,还是网络传输的实时流量、延迟等信息,亦或是应用程序的响应时间、资源占用等情况,都能被及时捕捉到。以一个大型在线游戏平台为例,AIOps会实时监控游戏服务器的CPU负载情况,当大量玩家同时登录、游戏场景切换导致数据处理量剧增时,CPU使用率会出现波动;同时也会监测网络的实时带宽使用情况,确保玩家之间的数据交互顺畅,避免因网络拥堵出现卡顿等问题。

面对大量的实时数据,AIOps运用先进的数据分析技术进行快速分析。一旦发现数据出现异常情况,比如某个时间段内服务器的CPU使用率突然飙升,远超正常运行的阈值,或者网络延迟出现异常的增加,它就能迅速检测到这些异常迹象。

在故障刚出现端倪之时,例如只是某一个微服务的响应时间稍微变长,还未对整个业务造成明显影响时,AIOps就能及时察觉并发出预警信号,同时还可以采取相应的预防措施。比如自动调整服务器资源分配,对出现异常的微服务所在的服务器增加临时的内存资源,或者提醒运维人员进一步查看具体情况,从而在故障还未真正扩大影响之前就将其遏制住,保障业务的连续性和稳定性。

这种实时监控和分析的能力,就像是为企业的IT系统配备了一个24小时不间断的值勤“卫士”,时刻警惕着可能出现的故障隐患,确保系统始终处于健康的运行状态。

(三)自动化根本原因分析

AIOps的自动化根本原因分析功能,是精准定位故障源头、避免故障再次发生的关键所在。

当系统出现异常或者故障迹象后,AIOps会自动对与该故障相关的各类数据进行深度挖掘和关联分析。它不会仅仅停留在表面的现象,比如只是发现某个服务器响应超时了,而是会深入去探究背后的根本原因。例如,通过分析服务器的系统日志,查看是否有特定的错误代码出现,是硬件驱动问题、软件配置错误,还是受到外部网络攻击等因素导致;同时结合性能指标数据,分析是内存溢出、CPU性能瓶颈,还是磁盘I/O出现阻塞等情况引起的响应超时。

它可以跨多个系统、多个层面去收集和梳理线索,将不同来源的数据整合起来进行综合判断。比如在一个包含多个子系统的企业级业务平台中,当出现交易失败的故障时,AIOps会自动关联数据库系统的日志,查看是否有数据写入异常;检查中间件的运行状态,看消息队列是否出现积压等情况;还会分析前端应用服务器的请求处理记录,确定是哪个环节首先出现了问题。

通过这样自动化的深度分析手段,AIOps能够精准地识别出故障产生的根本原因,不仅为当下快速解决故障提供了准确的方向,也为后续制定相应的改进措施、避免类似故障再次发生奠定了基础。运维人员可以依据这些分析结果,针对性地对系统进行优化,如修复软件漏洞、升级硬件设备、调整系统配置等,从而不断提升系统的稳定性和可靠性。

(四)预警机制

完善的预警机制是AIOps在故障预测中不可或缺的一环,它能够及时将潜在的故障信息传达给IT团队,让团队提前做好应对准备。

AIOps可以依据预设的规则以及前期的分析结果来触发预警通知。这些预设规则是基于企业的业务需求、系统特点以及过往的运维经验等多方面因素制定的。比如,对于一个对数据安全性要求极高的金融系统,当数据库的访问权限出现异常变动,或者关键数据文件的修改频率超出正常范围时,就会触发预警;再如,对于一个电商系统,在大促等业务高峰期,如果服务器的负载超过了设定的安全阈值的80%,即便系统暂时还未出现故障,AIOps也会及时发出预警。

预警通知的方式多种多样,可以通过邮件、短信、即时通讯工具等形式,确保IT团队成员能够第一时间接收到信息。例如,当检测到可能出现的网络故障时,AIOps会立即向负责网络运维的工程师发送短信提醒,告知其可能出现故障的大致位置以及潜在风险程度等关键信息。

收到预警通知后,IT团队就可以提前做好准备,采取相应的行动。比如提前调配备用服务器资源,准备好可能需要的软件补丁,或者组织相关人员对可能出现故障的模块进行重点排查等。这样一来,就能有效避免因故障突然发生导致的停机时间,最大程度地保障业务的连续性,减少因系统故障给企业带来的损失,让企业的IT运维从被动应对转变为主动预防。

三、故障自愈的关键环节

ff86aec96703b8ff3b38f5eb5e33ae04.jpeg

(一)故障诊断和定位

在利用AIOps实现故障自愈的过程中,故障诊断和定位是首要且关键的环节。这一环节依赖于对系统运行状态的实时监控以及关键指标数据的收集。例如,像服务器的CPU使用率、内存占用量、磁盘I/O读写速度,还有网络的带宽利用率、延迟情况,以及应用程序的响应时间、错误率等指标数据,都需要被实时捕捉并整合起来。

系统会依据预设的故障模型和规则来对这些数据进行分析判断。以电商系统为例,若预设当某个商品详情页的加载时间超过3秒,同时数据库查询该商品相关信息的时长也超出正常范围,且服务器的内存使用率在短时间内快速上升等多种情况同时出现时,可能预示着系统存在故障隐患,那么当实时监测的数据符合这一模型特征时,便会触发后续的诊断流程。

在此过程中,异常检测算法起着重要作用。比如通过孤立森林(Isolation Forest)算法,可以快速检测出那些明显偏离正常数据分布的异常点,从大量看似正常的数据中敏锐地发现潜在问题。关联规则挖掘技术同样不可或缺,它能帮助梳理不同指标数据之间的内在联系,比如发现网络延迟过高与特定服务器的磁盘I/O阻塞存在关联,进而确定故障根源所在。

同时,会对比历史数据和实时数据,通过分析数据的变化趋势、波动情况等,识别出异常模式。例如历史数据显示某业务在每天的某个固定时段流量会有小幅度上升,但当前实时数据却呈现出流量暴增且伴随着高延迟的情况,这种与历史常规模式的差异就能帮助精准定位到可能出现故障的环节,为后续自动化决策提供准确可靠的依据。

(二)自动化决策和动作

当完成故障诊断和定位后,自动化决策和动作阶段便开始发挥作用,其目的在于依据已经确定的故障根源,快速执行相应的措施,让系统能够迅速恢复正常运行状态。

首先,企业会预先基于过往的运维经验、系统架构特点以及业务需求等因素,定义好各种治理策略和动作规则。比如,对于常见的服务器内存溢出故障,规定当检测到内存使用率达到90%且持续增长时,应自动触发内存清理和优化的流程;对于网络故障,若某个节点出现中断,就自动切换到备用网络链路等。

然后,借助自动化运维工具以及编排引擎等技术手段来具体执行相应操作。像Ansible这类自动化运维工具,可以批量地对服务器进行配置修复,比如自动调整服务器的参数设置、重启相关服务等。编排引擎则能将多个操作按照一定的顺序和逻辑进行组合,实现复杂的故障处理流程自动化。

以云计算平台为例,如果某台虚拟机出现故障,自动化决策系统会根据预设规则判定故障类型,随后编排引擎会协调各个相关组件,先是将该虚拟机上的业务负载自动迁移到其他正常的虚拟机上,接着通知运维人员进行故障虚拟机的修复和检测,等修复完成后再根据资源情况合理安排业务回迁,整个过程无需人工过多干预,快速且高效地使系统恢复正常,最大程度降低故障对业务的影响。

(三)实时数据分析和预测助力自愈

实时数据分析和预测能力在故障自愈体系中犹如“瞭望塔”,能够提前察觉潜在的故障风险,为预防性维护以及故障发生时的快速自愈提供有力支撑。

系统会持续不间断地监控各类系统性能指标,涵盖硬件层面的如服务器温度、风扇转速,软件层面的如应用程序的并发处理能力、资源占用趋势等。通过时间序列分析技术,对这些指标数据按照时间顺序进行深度挖掘分析,能够发现其中隐藏的周期性规律以及趋势变化。比如,通过分析某在线办公软件服务器的CPU使用率的时间序列数据,发现每周一到周五的上午9点到11点是使用高峰期,使用率通常会维持在70%左右,但如果连续几天监测到在这个时段使用率攀升至90%且还有上升趋势,那就可能预示着系统即将面临性能瓶颈,存在故障风险。

机器学习预测模型也是关键的技术手段之一。例如,利用长短期记忆网络(LSTM)这类适合处理时间序列数据的深度学习模型,基于历史的大量运维数据进行训练后,可以预测未来一段时间内系统各项指标的变化情况。倘若预测到某数据库服务器在未来几小时内磁盘空间将耗尽,那么就可以提前采取诸如数据清理、磁盘扩容或者数据迁移等措施来避免故障真正发生。

同时,实时数据分析还能在故障已经发生时,帮助更精准地调整自愈策略。比如在执行故障处理流程中,根据实时反馈的数据发现最初制定的资源调度方案效果不佳,便可以及时调整调度策略,重新分配资源,确保系统能够尽快恢复正常,实现高效的故障自愈。

四、AIOps故障预测与自愈的应用案例

e783af49769e39cc4fec3efc3d55a57f.jpeg

(一)百度单机房故障自愈实践

在当今数据中心运维领域,单机房故障是一个亟待解决的关键问题,它可能给业务带来严重影响,如服务中断、数据丢失以及用户体验下降等。百度在单机房故障自愈方面展开了深入实践,并取得了显著成果。

首先,分析单机房故障的诱因至关重要。百度经过对核心业务的复盘,发现大多数单机房故障可归因于以下几个方面:一是基础设施故障,像物理机房故障、流量转发平台故障等,这些硬件层面的问题可能直接导致机房内服务无法正常运行;二是程序缺陷,例如程序隐藏的bug或者程序性能随时间逐渐退化,使得服务在运行过程中出现异常;三是变更故障,无论是程序、配置还是数据的变更,甚至是运维人员的误操作,都有可能引发故障;四是依赖的服务和平台故障,比如认证服务、支付服务等第三方服务,以及存储、计算、缓存服务等第三方平台出现问题,也会波及到单机房内相关业务的正常开展。

在容灾能力建设方面,百度有着清晰的思路。秉持着将服务拆分为若干不同的逻辑单元,让每个逻辑单元处于不同的物理机房,以此确保各单元均能提供产品线完整服务的理念。同时,要求服务容量支持N+1冗余,即任意一个逻辑单元发生故障时,可将流量切换至其他逻辑单元,保证向用户正常提供服务。然而,在实际的单机房容灾建设过程中,也遇到了一些常见问题,比如服务存在单点,这意味着系统内只有一个实例或者多个实例全部部署在同一物理机房的程序模块,当单点服务所在机房或其自身发生故障时,无法通过流量调度、主备切换等手段快速止损;服务跨机房混联,上下游服务之间存在常态的跨机房混联,使得逻辑服务单元未隔离在独立的物理范围内,一旦单机房故障就会给产品线服务带来全局性影响,而且流量调度也无法让服务恢复正常;服务不满足N+1冗余,也就是任意单个机房故障时,其余机房剩余容量不足以承担该机房切出的流量,这样流量调度会导致其余机房服务过载,造成多个机房服务故障,扩大影响范围;还有服务关联强耦合的情况,即上下游服务使用固定IP或固定机器名进行直接连接,单机房故障发生时,关联的上下游之间无法快速进行流量调度止损。

针对这些问题,百度采取了盲测验收的方式来验证业务线的容灾能力以及及时发现能力是否出现退化。盲测分为三种类型:无损盲测,仅从监控数据层面假造故障,同时被测业务可根据监控数据决策流量调度目标,对业务服务实际无影响,主要验证故障处置流程是否符合预期、入口级流量切换预案是否完整;提前通知有损盲测,真实植入实际故障,从网络、连接关系等基础设施层面植入真实错误,对业务服务有损,用于实战验证产品线各个组件的逻辑单元隔离性、故障应急处置能力,同时提前告知业务盲测时间和可能的影响,方便业务线运维人员提前准备相应的止损操作,减少因单机房止损能力建设不完善导致的损失;无通知有损盲测,在各业务线单机房容灾能力建设完成后,进行不提前通知的有损盲测,让业务经历与真实故障场景完全相同的情况,真实验证业务线在单机房故障情况下的止损恢复能力。

基于AIOps实现故障自愈,百度有着一套完整的解决方案。例如“书同文”,即建立运维知识库,统一运维“语言”,让运维人员在处理故障等操作时有标准化的参考依据;“车同轨”,打造运维开发框架,确定一致的运维“方法”,保障运维流程的规范性和高效性;“行同伦”,构建运维策略库,规范一致的运维“模式”,使得在面对不同故障场景时能有相应的应对策略。

同时,百度也制定了单机房故障自愈风险控制策略,包含两个层面。在接入层决策风险控制方面,要避免跨运营商、跨地域流量调度,关注目标VIP的健康程度,协调好外网入口带宽资源;在服务层决策风险控制层面,要确保故障和过载机房的流量尽可能切到健康机房,使各机房水位尽可能平衡,并且流量调度参考实时容量反馈,动态规划调度策略。通过这样全方位的实践与策略制定,百度在单机房故障自愈方面得以有效降低风险、提高效率,为业务可用性提供了坚实保障。

(二)网易游戏AIOps应用案例

网易游戏在数字化运营的进程中,积极探索AIOps的落地应用,围绕异常检测、故障预测、故障自愈等方面开展了诸多工作,并取得了良好的实践效果。

在异常检测方面,网易游戏深知其是研究AIOps的必经之路,后续很多功能场景都以此为基础。与传统阈值配置成本高、误报多、场景覆盖少的情况不同,网易游戏的异常检测具备易配置、准确率高、场景覆盖面广、自动更新等优点。不过,实际运用中发现通用的算法或工具效果往往不理想,因为这些算法只能针对特定场景,需要做很多优化来适配实际业务场景。

为此,网易游戏对算法做了针对性的调整优化,并结合业务需求对指标进行划分,采用不同的检测算法来应对不同类型指标,以达到更好的检测效果。具体而言,将异常检测根据指标类型划分成了三种场景:

一是业务黄金指标,像游戏在线人数这类指标,其特性是周期性强、曲线波动小、指标量级小,但对准确率和召回率要求高。鉴于有监督模型具有高准召率、高扩展性的优点,网易游戏考虑采用有监督模型对业务黄金指标进行异常检测。然而,有监督模型需要大量的标注数据,而异常检测项目很难收集到足够的异常数据。为解决这一问题,网易游戏从样本构建到报警可视化,构建了一整套的检测框架。在样本构建上,样本主要来自历史KPI数据集和线上用户标注数据,先抽样部分KPI数据集,采用简单无监督检测模型如Iforest检测得到异常score,通过不等比例分层抽样筛选出疑似异常样本和正常样本,进行人工标注,并划分成训练集和测试集用于模型训练和测试,功能上线后,收集用户标注数据用于模型优化,且用户标注的数据仅作用于本项目,避免不同用户异常认知差异导致的错误报警问题,当历史异常数据不足时,还会通过异常生成的方式(如加噪声、设计抖动模式等)来生成样本。预处理模块包含曲线分类、缺失标准化处理以及特征计算三个部分,曲线分类采用LSTM+CNN的方式实现,将待检测KPI分成3类(稳定、不稳定、不检测),分类准确率可达到93%+,用线性和前值填充的方式处理缺失值,并进行max-min归一化,构建近500维特征后,考虑无效特征问题进行特征选择再建模。模型主要采用常见模型,如RF、XGB、GBDT等,再用LR进行集成检测。可视化部分包含图文告警、快速标注、异常视图三个模块,通过图文形式报警,在报警消息中加上快速标注链接,方便用户收到报警后快速确认是否有异常发生并标注,通过这样的有监督模型方式,线上检测效果可达到90%+,能很好地满足用户需求。

二是性能指标,像CPU使用率这类指标,其量级大、指标类型复杂、周期不定,若采用有监督模型,需要花费巨大的标注成本和训练成本,不利于大规模部署的业务。所以网易游戏采用无监督模型来检测性能类型指标,按异常类型将其划分成毛刺、漂移、高频、线型趋势四种类型,分别采用不同的检测模型进行检测,用户可以根据自己的需求选择报警类型。例如,毛刺类型的异常最为常见,可以采用差分和SR算法进行检测,效果不错;漂移类型的问题,首先需要进行STL周期分解,分解出周期、趋势和残差项,然后采用均值漂移和鲁棒回归算法进行检测;高频类型是毛刺的一种变种,有时不关心瞬时的抖动,但持续抖动时就需要关注了,采用多步差分进行检测;线性趋势类型主要是为了监控内存泄漏类型问题,先进行STL分解,再通过LR回归和MK检测进行趋势检测。

在故障预测环节,网易游戏借助AIOps整合多源数据,运用机器学习算法对历史数据进行深度分析建模,挖掘数据中的模式和规律。例如通过分析游戏服务器在不同时段的负载数据、玩家行为数据等,结合以往出现故障时的相关数据特征,构建故障预测模型。当监测到类似曾经故障前的数据特征组合出现时,如服务器某时段的CPU使用率异常升高、网络延迟增大且同时玩家掉线率上升等情况,便能提前预测可能发生的故障,及时通知运维团队做好准备。

而在故障自愈方面,一旦故障被检测和定位出来,网易游戏的自动化系统会依据预设的规则和策略执行相应的自愈操作。比如对于游戏服务器出现的临时性卡顿故障,如果是因为内存占用过高导致,系统会自动触发内存清理和优化的流程,释放内存资源,让服务器恢复正常运行;若某个游戏区服出现网络连接故障,会自动切换到备用网络链路,保障玩家能够继续正常游戏。通过这样一套围绕AIOps展开的工作流程,网易游戏在保障业务稳定运行、提升玩家体验方面发挥了重要作用,同时也为游戏行业的运维智能化发展提供了有益的借鉴。

(三)阿里巴巴的故障管理实践

阿里巴巴的GOC团队在运维领域积极探索,利用AIOps搭建起了覆盖故障全生命周期指挥中心,在实际的故障管理工作中积累了丰富的经验,并发挥了重要作用。

在搭建AIOps系统时,GOC团队秉持场景、算法、数据三位一体的架构理念。他们认识到算法是必不可少的,而算法底层需要高质量的数据为其进行训练及优化。但在利用数据生成算法方面,团队意识到拥有大量数据并不代表就能快速生成想要的算法,更应注重数据的质量,若数据集中无意义及不标准的数据过多,则很难为算法的生成做出贡献。在有了算法及数据基础之后,团队选取了一些典型的运维场景,例如智能监控、智能调度、智能问答等等进行算法效率的验证,从而发挥系统智能的价值,所用到的算法组件包括但不限于异常检测、最优化策略/规划&预测、VLP/意图识别等相关算法组件。

在故障管理实践中,针对千万级别的运维事件,如何判断哪些与业务故障相关是首要难题。传统监控系统存在误报漏报较多、判断条件繁多、监控维护成本较大等问题,而阿里巴巴GOC团队利用AIOps的智能监控能力,通过智能时间序列异常检测算法以及智能规则引擎等技术手段,实现了更精准的故障发现。比如在淘宝、天猫等电商业务场景中,面对海量的交易数据以及复杂的系统调用链路,AIOps能够实时监测各项业务指标,当出现如交易量异常下跌、交易创建失败率突然升高等情况时,快速准确地识别出可能的故障迹象,故障发现准确率大幅提升,相比以往依靠人工和传统方式,极大地缩短了故障发现的时间。

在故障定级方面,以往故障等级定义差异较大,不同的业务团队可能有不同的评判标准,这给统一管理和快速决策带来了困难。通过AIOps系统,依据预先设定的规则以及对故障影响面、业务重要性等多维度的分析,能够自动给出相对客观准确的故障定级建议,让后续的处理决策更加科学合理。例如在阿里云的云计算服务出现故障时,系统可以根据受影响的用户数量、业务范围以及资源损耗等情况,快速确定故障的等级,以便调配相应的资源来解决问题。

故障通告环节也十分关键,AIOps能够实现自动化通告,及时将故障信息推送给相关的干系人,包括运维人员、开发团队、业务负责人等,确保各方能够第一时间了解情况并协同处理故障。而且在故障辅助定位方面,借助数据的多指标关联分析、自动化根因分析等功能,梳理复杂的应用依赖关系,从众多可能的原因中精准定位故障的根源所在。比如在阿里巴巴内部众多跨BU(业务单元)的应用中,当出现故障时,AIOps可以跨部门、跨系统地收集和分析数据,快速追溯是哪个环节的哪个具体问题导致了故障,像是数据库的写入异常、中间件的消息队列积压还是前端应用服务器的请求处理故障等原因。

在故障快速恢复阶段,AIOps同样发挥了重要作用。通过智能调度等功能,合理调配资源,比如在某个机房出现故障时,自动将业务负载迁移到其他正常的机房,或者对故障服务器上的服务进行快速重启、切换等操作,尽可能缩短故障对业务的影响时间,保障阿里巴巴庞大业务体系的持续稳定运行。通过这样覆盖故障全生命周期的实践应用,阿里巴巴的GOC团队不断优化完善AIOps系统,也为业界在故障管理方面提供了宝贵的经验和参考范例。

五、实施AIOps故障预测与自愈的注意事项

(一)数据质量与管理

在利用AIOps实现故障预测与自愈的过程中,数据的重要性不言而喻。数据就如同整个系统的“血液”,为故障预测与自愈功能的实现提供养分与支撑,其质量的高低直接影响着最终的效果。

首先,数据的准确性是基础。不准确的数据就好比错误的导航信息,会让整个故障预测与自愈机制“误入歧途”。例如,若收集到的服务器性能指标数据存在偏差,原本正常的CPU使用率被误报过高或过低,那么基于这些数据所构建的故障预测模型就会做出错误的判断,可能会在无故障时发出预警,或者在故障即将发生时却毫无察觉。所以,无论是通过传感器收集的硬件状态数据,还是系统自动记录的各类日志信息等,都需要保证其来源可靠、采集方式科学,尽量减少数据的误差。

其次,数据的完整性也至关重要。AIOps需要整合多源的数据来进行综合分析,缺少任何关键部分的数据都可能导致分析结果片面,进而影响故障预测与自愈的精准度。比如在分析一个复杂业务系统的故障原因时,只获取了服务器端的数据,却遗漏了客户端用户行为数据以及网络传输数据,那就很难全面地判断故障到底是源于服务器性能不足、用户操作异常还是网络卡顿等原因。因此,要尽可能涵盖所有与系统运行相关的关键数据维度,确保数据没有缺失环节。

再者,时效性更是不容忽视的一点。IT系统时刻处于动态运行之中,数据也是实时更新变化的。如果数据更新不及时,故障预测与自愈系统就无法依据最新的情况做出正确反应。例如,实时监控到某应用程序的响应时间在短时间内出现异常增长,但若数据传输存在延迟,等相关信息传递到故障预测与自愈模块时,故障可能已经进一步恶化,错过了最佳的预防或处理时机。

为了保障数据的这些优良特性,做好数据的管理工作必不可少。在数据收集阶段,要确定合理的数据采集频率和范围,选用合适的工具与技术,确保能获取到高质量且有用的数据。比如对于关键服务器的性能数据,可以每隔几秒采集一次,而对于一些相对稳定、变化缓慢的数据则可以适当拉长采集间隔时间。

在数据整理方面,要对收集来的海量原始数据进行分类、清洗等操作。去除那些重复的、明显错误的以及无关紧要的数据,将有价值的数据按照不同的业务模块、系统组件或者数据类型等进行归类整理,便于后续的存储和分析使用。

而数据存储环节,则要考虑到数据的安全性、可扩展性以及易访问性等因素。选择合适的存储方式,如云存储或者本地高性能存储设备等,同时建立完善的数据备份和恢复机制,以防数据丢失或损坏对整个AIOps故障预测与自愈系统造成毁灭性打击。只有把数据质量与管理工作做扎实了,基于数据驱动的故障预测与自愈功能才能更好地发挥作用,为企业的IT运维保驾护航。

(二)团队协作与技能要求

实施AIOps实现故障预测与自愈是一个复杂的系统性工程,涉及到多个不同专业背景和技能的角色协同合作,每个角色都如同机器上的关键零部件,缺一不可。

运维工程师在其中扮演着至关重要的角色。他们基于日常运维工作中积累的丰富实践经验,能够精准地确定业务需求以及可能出现故障的关键环节。例如,他们清楚地知道哪些服务器在业务高峰期容易出现负载过高的情况,哪些网络链路曾频繁出现卡顿等问题。在AIOps项目中,运维工程师需要定义好故障止损等相关的问题域,规划解决思路,并明确指出风险点所在,为后续的智能化运维工作划定重点方向。而且,在整个故障预测与自愈解决方案从设计到落地实施的过程中,运维工程师要全程跟踪参与。在策略设计前期,他们要提供数据标注支持,协助构建准确的故障预测模型;中期要对方案的实施效果进行验收,确保各项功能达到预期目标;后期则要将方案实际部署运行到生产环境中,并持续关注其运行状态,及时反馈出现的问题。可以说,运维工程师是连接传统运维与智能化AIOps运维的桥梁,需要熟悉运维领域的专业知识,了解各种运维难题以及对应的解决思路,同时还要对人工智能和机器学习的基本原理有一定的认知,知道哪些场景适合运用机器学习方法来解决问题,以及需要提供什么样的样本和数据等,成为AI在运维领域落地实施的解决方案专家。

运维AI工程师则是将机器学习等人工智能算法与实际的故障处理业务场景深度融合的关键角色。他们针对具体的故障场景,例如单机房故障场景下的各类风险点,进行专门的策略研发与实验工作。像设计异常检测算法,通过巧妙运用AI方法,提高故障发现时指标异常判断的准确率和召回率,为整个故障自愈流程打下坚实的数据基础;还会设计策略编排算法,依据当前线上的实际流量和服务状态,构建损益计算模型,精准判断采取何种操作组合或者步骤,能够让自动止损带来最大收益的同时将风险控制到最小;同时,流量调度算法也是其重要工作内容之一,基于线上服务容量以及实时流量情况,进行精确的流量比例计算,有效防御容量不足或不准等风险,实现流量调度收益的最大化。在完成策略设计与研发后,运维AI工程师还要依据历史数据进行案例回溯,并开展仿真案例模拟,严谨地验证策略效果,不断进行迭代调优,直至达到线上运行所要求的准确率和召回率标准。这就要求他们具备扎实的AI工程师技能,对数学及机器学习方法有深入的掌握,并能够灵活应用到实际的运维业务场景之中。

平台研发工程师主要聚焦于各类平台的建设工作,为AIOps的运行提供稳固的支撑环境。一方面,要打造基础运维平台,比如构建监控平台和流量调度平台等,这些平台在日常运维中负责提供标准化的运维数据获取途径以及运维操作接口,并且在AIOps模式下,要确保这些接口能够同时支持人工和自动的数据获取及运维操作,满足不同场景下的使用需求。另一方面,要搭建智能运维平台,提供对AI能力的全方位支持,像是统一的数据服务(如运维知识库),方便不同角色的人员查阅和共享运维知识;构建运维开发框架,确定规范一致的运维“方法”,保障运维流程的高效性和规范性;设立运维策略框架,为AI策略的实验和运行提供有力依托等。

此外,还有像平台研发工程师等其他相关角色,共同参与到整个系统的研发和维护工作中,保障平台的稳定性和可扩展性。这些不同角色之间需要紧密协作,通过定期的沟通会议、共享项目文档以及建立有效的反馈机制等方式,确保信息的及时传递和问题的快速解决,只有这样,才能让整个故障预测与自愈系统顺利搭建并高效运行起来。

(三)持续优化与改进

AIOps系统并非是一个一旦搭建完成就一成不变的静态体系,而是需要随着实际运维情况的变化以及业务发展的需求,不断地进行优化与改进,就如同汽车需要定期保养、升级才能保持良好性能一样。

一方面,要根据实际运维中的反馈情况,对算法模型进行持续优化。例如,在故障预测环节所运用的机器学习算法模型,随着时间推移和业务数据量的不断增加,可能会出现预测准确率下降或者误报率升高等情况。这或许是因为系统运行环境发生了变化,新的业务逻辑引入导致数据特征有所改变,或者原本的模型在长期学习过程中出现了过拟合等问题。此时,就需要运维AI工程师等专业人员重新审视模型,收集更多新的数据样本,对模型的参数进行调整,甚至更换更合适的算法,让模型能够更好地适应新的业务场景,提高故障预测的精准度。比如,最初基于简单逻辑回归算法构建的故障预测模型在业务相对简单、数据量较小时表现尚可,但随着企业业务拓展,数据变得更加复杂多样,就可以考虑引入深度学习中的神经网络算法,并通过大量新的数据进行训练优化,使模型能够挖掘出更深层次的数据关系,更准确地预测故障发生的可能性。

其次,对于策略规则也需要不断调整。企业的IT运维策略往往需要根据业务的优先级、风险承受能力以及外部环境等因素动态变化。比如,在业务高峰期,对于核心业务系统的故障自愈策略可能需要更加激进一些,一旦检测到潜在故障风险,立即采取较为强力的资源调配和修复措施,以保障业务的连续性,哪怕这样可能会消耗更多的备用资源;而在业务低谷期,则可以适当放宽一些自愈的触发条件,优先采用一些相对保守、成本更低的应对策略。再比如,随着企业对数据安全性要求的提高,涉及到数据访问、存储等方面的故障处理策略就需要进一步细化和强化,防止数据泄露等安全事故的发生。

再者,技术手段也需要与时俱进地更新。IT行业的技术发展日新月异,新的硬件设备、软件框架以及运维工具不断涌现。AIOps系统要积极引入这些先进的技术手段来提升故障预测与自愈的效果和效率。例如,采用更高效的数据采集传感器,能够获取更精准、更全面的系统运行数据;运用新型的自动化运维工具,可以更快速地执行故障处理操作,减少人工干预的时间成本;利用最新的可视化技术,将复杂的故障分析结果以更直观易懂的方式呈现出来,方便运维人员快速定位问题和理解故障根源。同时,还要关注行业内其他企业在AIOps实践方面的优秀经验和创新做法,结合自身实际情况进行借鉴吸收,不断完善自身的故障预测与自愈系统,使其始终保持在一个较高的性能水平,为企业的IT运维和业务发展提供持续有力的保障。

a466ca26c37645d233dcb295f2a2f832.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值