时域和频域
信号完整性 第二章
一、时域和频域的性质
- 时域是真实世界,客观存在的。频域是非真实的,是一个数学构造。
- 从时域转向频域的原因在于,在频域中能够更快的解决电气互连的相关问题,在频域中分析阻抗问题是首选。
- 时域中的任何波形都能有正弦波的组合完全唯一描述,同一波形的时域和频域描述包含的信息完全相同。
- 正弦波是频域的语言,任何两个不同频率的正弦波都是正交的,因此在频域中,不同频率的正弦波可以分离开。
二、频谱
- 频域用频率和幅度表示正弦波,在频域上用一个点表示,若干个频率点幅值的集合称为频谱,计算时域频谱的唯一办法是傅里叶变换。
- 任何一个波形都能以周期 T 拓展成重复波形,重复频率 F,并用傅里叶变换转换到频域中,频谱中的正弦波频率应该是重复频率 F 的整数倍,其中第一个称为一次谐波,第二个称为二次谐波,每一个分量称为一个谐波。
- 0次谐波,因为正弦波的均值是0,所有正弦波的描述时域均值也是0,所以对于非0的时域信号,用一个直流分量即0次谐波描述波形的均值。
- 任何谐波的幅度都可由 An=2/(nπ)表示
三、带宽
- 带宽表示频谱中最高的有效正弦波频率值,更高的影响可以忽略不计;也可以表示为 用于还原时域信号所使用的频域谐波最大频率。
- 只要减小信号带宽,上升时间就会增加。带宽越大,所使用的谐波分量频率越高,波形上升边陡峭,合成波形的上升时间更短,与理想方波信号就会越接近。即越多的高次谐波参与合成,越能还原理想方波,上升时间越趋近于0。
- 上升边和带宽的经验公式:BW = 0.35 / RT
BW 表示带宽,单位为 GHz,RT 表示10%~90%上升时间,单位为 ns,例如,若信号的上升时间为1ns,则带宽约为350MHz。 - 对于一个1GHz 的理想方波 和 1GHz 的梯形波,梯形波的10% - 90%上升边为0.08ns ,从 0.35/0.08 = 5GHz开始,梯形波的谐波幅值显著小于理想方波。对于上升时间有限的任何波形,有效指的是信号的谐波幅度高于相同频率的理想方波中相应谐波幅度的70% 时的那一点。这意味着 5GHz 的信号可能有70% 的损耗,高于5GHz的信号损失更多。
- 带宽和上升边直接相关,对于两个不同的波形,即使有相同的时钟频率,上升边和带宽也很可能不同。
- 上升边一般可以用7% - 10% 的时钟周期估算, 带宽 BW = 0.35 / RT ,RT = 0.07 T,因此可以得到 BW = 5 F (时钟频率)。例如时钟频率100 MHz,带宽可以估算为 500MHz。