离散信号(三) | 时域运算性质 (差分、卷积)

离散信号的时域运算

离散信号的时域运算包括平移、翻转、相加、相乘、累加、差分、时间尺度变换、卷积和及相关运算等。

(一)平移

如果有序列 x ( n ) x(n) x(n),当m为正时, x ( n − m ) x(n-m) x(nm)是指序列 x ( n ) x(n) x(n)逐项依次延时(右移)m位得到的一个新序列,而 x ( n + m ) x(n+m) x(n+m)则指依次超前(左移)m位。m为负时,则相反。

(二)翻转

如果有序列 x ( n ) x(n) x(n),则 x ( − n ) x(-n) x(n)是以纵轴为对称轴将序列 x ( n ) x(n) x(n)加以翻转得到的新序列。

(三)累加

如果有序列 x ( n ) x(n) x(n),则 x ( n ) x(n) x(n)的累加序列 y ( n ) y(n) y(n)
y ( n ) = ∑ k = − ∞ n x ( k ) y(n)=\sum_{k=-\infty}^{n}x(k) y(n)=k=nx(k)
它表示 y ( n ) y(n) y(n) n 0 n_0 n0上的值等于 n 0 n_0 n0上及 n 0 n_0 n0以前所有 x ( n ) x(n) x(n)值之和。

(四)差分运算

如果有序列 x ( n ) x(n) x(n),则 x ( n ) x(n) x(n)的前向差分和后向差分分别为

前向差分
Δ x ( n ) = x ( n + 1 ) − x ( n ) \Delta x(n)=x(n+1)-x(n) Δx(n)=x(n+1)x(n)
后向差分
∇ x ( n ) = x ( n ) − x ( n − 1 ) \nabla x(n)=x(n)-x(n-1) x(n)=x(n)x(n1)
由此可得出
∇ x ( n ) = Δ x ( n − 1 ) \nabla x(n)=\Delta x(n-1) x(n)=Δx(n1)
(五)时间尺度(比例)变换

对某序列 x ( n ) x(n) x(n),其时间尺度变换序列为 x ( m n ) x(mn) x(mn) x ( n m ) x(\frac{n}{m}) x(mn),其中m为正整数。

m = 2 m=2 m=2 x ( 2 n ) x(2n) x(2n)为例。 x ( 2 n ) x(2n) x(2n)不是像连续信号那样将 x ( n ) x(n) x(n)序列简单地在时间轴上按比例地压缩为原来一半,而是采样频率降低为原来的一半,即从 x ( n ) x(n) x(n)中每隔2点取1点。如果把 x ( n ) x(n) x(n)看作是连续时间信号 x ( t ) x(t) x(t)按采样间隔T的采样,则 x ( 2 n ) x(2n) x(2n)相当于将采样间隔从T增加到2T,即
x ( 2 n ) = x ( t ) ∣ t = n 2 T x(2n)=x(t)|_{t=n2T} x(2n)=x(t)t=n2T
这种运算也称为抽取,即 x ( 2 n ) x(2n) x(2n) x ( n ) x(n) x(n)的抽取序列。 x ( n ) x(n) x(n) x ( 2 n ) x(2n) x(2n)分别如下图所示。

同样地, x ( n 2 ) = x ( t ) ∣ t = n T / 2 x(\frac{n}{2})=x(t)|_{t=nT/2} x(2n)=x(t)t=nT/2表示采样间隔由T变成了 T 2 \frac{T}{2} 2T,也可将 x ( n 2 ) x(\frac{n}{2}) x(2n)称为是 x ( n ) x(n) x(n)的插值序列。

(六)卷积和

设两序列为 x ( n ) x(n) x(n) h ( n ) h(n) h(n),则 x ( n ) x(n) x(n) h ( n ) h(n) h(n)的卷积和定义为
y ( n ) = ∑ m = − ∞ ∞ x ( m ) h ( n − m ) = x ( n ) ∗ h ( n ) y(n)=\sum_{m=-\infty}^{\infty}x(m)h(n-m)=x(n)*h(n) y(n)=m=x(m)h(nm)=x(n)h(n)
(七)两序列相关运算

两序列相关运算定义为
R x y ( m ) = ∑ n = − ∞ ∞ x ( n ) y ( n + m ) R_{xy}(m)=\sum_{n=-\infty}^{\infty}x(n)y(n+m) Rxy(m)=n=x(n)y(n+m)
与离散信号卷积运算的关系为
R x y ( m ) = x ( m ) ∗ y ( − m ) R_{xy}(m)=x(m)*y(-m) Rxy(m)=x(m)y(m)
y ( n ) = x ( n ) y(n)=x(n) y(n)=x(n)时,有自相关序列
R x x ( m ) = ∑ n = − ∞ ∞ x ( n ) x ( n + m ) = x ( m ) ∗ x ( − m ) R_{xx}(m)=\sum_{n=-\infty}^{\infty}x(n)x(n+m)=x(m)*x(-m) Rxx(m)=n=x(n)x(n+m)=x(m)x(m)
当m=0时,它表示了序列的总能量
R x x ( 0 ) = ∑ n = − ∞ ∞ x 2 ( n ) R_{xx}(0)=\sum_{n=-\infty}^{\infty}x^2(n) Rxx(0)=n=x2(n)

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值