论文阅读: Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approac

论文阅读: Inertia Tensor Properties in Robot Dynamics Identification: A Linear Matrix Inequality Approach

概述

本文介绍了惯性参数物理一致性约束的一个新不等式,也就是三角不等式。

物理一致性约束

动力学模型

用于辨识的动力学参数一般选择为:连杆k的质量 m k m_k mk,质量矩 l k l_k lk,以及惯性张良 L k L_k Lk,表达在一个给定参考坐标系中。 r k r_k rk是连杆质量中心COM在坐标系 k k k中的坐标,有
l k = m k r k l_k=m_kr_k lk=mkrk
I k I_k Ik是以质心为参考的惯性张量,则有Huygens-Steiner定理
L k = I k + 1 m k S ( l k ) T S ( l k ) L_k=I_k+\frac{1}{m_k}S(l_k)^TS(l_k) Lk=Ik+mk1S(lk)TS(lk)
动力学方程可以写为
H ( q , q ˙ , q ¨ ) δ = τ H(q,\dot q, \ddot q)\delta=\tau H(q,q˙,q¨)δ=τ
其中 δ \delta δ是惯性参数 m k , l k , L k m_k,l_k,L_k mk,lk,Lk构成的向量

物理一致性条件

物理一致性既物理上正确的要求,包括质量必须为正,惯性张量必须正定
{ m k > 0 I k ≻ 0 \begin{cases} m_k>0\\ I_k\succ 0\\ \end{cases} {mk>0Ik0
对惯性张量有
I k = L k − S ( l k ) T m k − 1 S ( l k ) ≻ 0 I_k=L_k-S(l_k)^Tm_{k}^{-1}S(l_k)\succ 0 Ik=LkS(lk)Tmk1S(lk)0
使用舒尔补可以将其写成
[ L k S ( l k ) T S ( l k ) m k 1 ] ≻ 0 \left[ \begin{matrix} L_k& S\left( l_k \right) ^T\\ S\left( l_k \right)& m_k\mathbf{1}\\ \end{matrix} \right] \succ 0 [LkS(lk)S(lk)Tmk1]0

完全物理一致性

Traversaro指出,惯性张量的物理一致性不仅包括正定,还有所谓的三角不等式。刚体的惯性张量可以完全由三个惯性主轴的转动惯量定义。其他任意给定的坐标系中的惯性张量与惯性主轴坐标中的惯性张量有如下关系
I k = R Y k R T I_k=RY_kR^T Ik=RYkRT
其中 Y k = d i a g ( Y x , Y y , Y z ) Y_k=diag(Y_x,Y_y,Y_z) Yk=diag(Yx,Yy,Yz),物理一致性既是要求
{ Y x > 0 Y y > 0 Y z > 0 \begin{cases} Y_x>0\\ Y_y>0\\ Y_z>0\\ \end{cases} Yx>0Yy>0Yz>0
事实上,因为密度必须是非负,会产生一个额外的约束,也就是所谓的三角不等式。惯性张量的任意两个特征值之和大于第三个
{ Y x + Y y > Y z Y y + Y z > Y x Y z + Y x > Y y \begin{cases} Y_x+Y_y>Y_z\\ Y_y+Y_z>Y_x\\ Y_z+Y_x>Y_y\\ \end{cases} Yx+Yy>YzYy+Yz>YxYz+Yx>Yy

LMI形式的三角不等式

三角不等式可以改写为
{ Y x + Y y + Y z > 2 Y z Y x + Y y + Y z > 2 Y x Y x + Y y + Y z > 2 Y y \begin{cases} Y_x+Y_y+Y_z>2Y_z\\ Y_x+Y_y+Y_z>2Y_x\\ Y_x+Y_y+Y_z>2Y_y\\ \end{cases} Yx+Yy+Yz>2YzYx+Yy+Yz>2YxYx+Yy+Yz>2Yy

Y x + Y y + Y z 2 > max ⁡ ( Y x , Y y , Y z ) \frac{Y_x+Y_y+Y_z}{2}>\max \left( Y_x,Y_y,Y_z \right) 2Yx+Yy+Yz>max(Yx,Yy,Yz)
因为这三个数是 I k I_k Ik的特征值,因此有
t r ( I k ) 2 > λ max ⁡ ( I k ) \frac{tr\left( I_k \right)}{2}>\lambda _{\max}\left( I_k \right) 2tr(Ik)>λmax(Ik)
表达为LMI形式,有
t r ( I k ) 2 1 3 − I k ≻ 0 \frac{tr\left( I_k \right)}{2}\mathbf{1}_3-I_k\succ 0 2tr(Ik)13Ik0
为将其用辨识参数表达,有如下推导:
t r ( L k − S ( l k ) T m k − 1 S ( l k ) ) 2 1 3 − ( L k − S ( l k ) T m k − 1 S ( l k ) ) ≻ 0 ⇔ ( t r ( L k ) 2 1 3 − L k ) − m k − 1 ( l k T l k 1 3 − S ( l k ) T S ( l k ) ) ≻ 0 \frac{tr\left( L_k-S(l_k)^Tm_{k}^{-1}S(l_k) \right)}{2}\mathbf{1}_3-\left( L_k-S(l_k)^Tm_{k}^{-1}S(l_k) \right) \succ 0 \\ \Leftrightarrow \left( \frac{tr\left( L_k \right)}{2}\mathbf{1}_3-L_k \right) -m_{k}^{-1}\left( l_{k}^{T}l_k1_3-S\left( l_k \right) ^TS\left( l_k \right) \right) \succ 0 2tr(LkS(lk)Tmk1S(lk))13(LkS(lk)Tmk1S(lk))0(2tr(Lk)13Lk)mk1(lkTlk13S(lk)TS(lk))0
根据反对称矩阵的性质,有
l k T l k 1 3 − S ( l k ) T S ( l k ) = l k l k T l_{k}^{T}l_k\mathbf{1}_3-S\left( l_k \right) ^TS\left( l_k \right) =l_kl_{k}^{T} lkTlk13S(lk)TS(lk)=lklkT
因此
( t r ( L k ) 2 1 3 − L k ) − l k m k − 1 l k T ≻ 0 \left( \frac{tr\left( L_k \right)}{2}\mathbf{1}_3-L_k \right) -l_km_{k}^{-1}l_{k}^{T}\succ 0 (2tr(Lk)13Lk)lkmk1lkT0
使用舒尔补写成LMI形式
[ ( t r ( L k ) 2 1 3 − L k ) l k l k T m k ] ≻ 0 \left[ \begin{matrix} \left( \frac{tr\left( L_k \right)}{2}\mathbf{1}_3-L_k \right)& l_k\\ l_{k}^{T}& m_k\\ \end{matrix} \right] \succ 0 [(2tr(Lk)13Lk)lkTlkmk]0
这是完整形式的物理一致性约束,包含了质量为正,张量正定以及三角不等式。他是前面这个物理一致性条件 [ L k S ( l k ) T S ( l k ) m k 1 ] ≻ 0 \left[ \begin{matrix} L_k& S\left( l_k \right) ^T\\ S\left( l_k \right)& m_k\mathbf{1}\\ \end{matrix} \right] \succ 0 [LkS(lk)S(lk)Tmk1]0的一个子集。
因此,满足物理一致性约束的优化问题是
min ⁡ δ ∣ ∣ H M δ − τ M ∣ ∣ 2 s . t . [ ( t r ( L k ) 2 1 3 − L k ) l k l k T m k ] ≻ 0 \min_{\delta} \qquad ||H_M\delta -\tau _M||^2 \\ \mathrm{s}.t.\quad \left[ \begin{matrix} \left( \frac{tr\left( L_k \right)}{2}\mathbf{1}_3-L_k \right)& l_k\\ l_{k}^{T}& m_k\\ \end{matrix} \right] \succ 0 δmin∣∣HMδτM2s.t.[(2tr(Lk)13Lk)lkTlkmk]0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值