保险行业,COT,TOT

COT在保险行业中代表优秀会员,源自国际寿险百万圆桌会议(MDRT)。这一称号象征着销售能力和专业品质的卓越,入选需遵循MDRT的高标准伦理准则。MDRT会员分为membership、court、top三个等级,court通常意味着达到百万圆桌会员业绩的三倍。中国也有了自己的百万圆桌会议,推动行业专业水平提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

保险行业中,cot,英文全称为court,意思是优秀会员。
在保险行业中,court一词起源于1927年国际寿险百万圆桌会议。国际寿险百万圆桌会议是每个保险从业者梦想前往的地方,能够成为国际寿险百万圆桌会议的优秀会员,说明自己的销售能力突出,品质优秀。成为国际寿险百万圆桌会议的会员,需要遵循MDRT纲领。MDRT纲领:始终将客户的最高利益置于自己的利益之上;对客户的所有商业信息和个人资讯严格保密;全面充分的公开所有必要事实,使客户作出的决定有所依据;注意个人的言行等。由于各国的情况不一样,成为court的标准是不同的。MDRT以本国货币表示的最低销售达标佣金收入,制定了不同入会标准。根据会员的业绩,MDRT将所有会员分为3个等级,即membership、court、top。在看到国际成立寿险百万圆桌会议后,中国的寿险业务人员也梦想组织一个中国百万圆桌会议。中国百万圆桌会议也在中国寿险业务人员的愿望下诞生了。2019年7月13日,中国厦门开展了第十六届中国国际保险精英圆桌大会。

保险cot的意思是指优秀会员,在保险行业中,cot其实是起源于国际寿险百万圆桌会议,能够成为优秀会员,说明其销售能力突出且品质优秀,是保险业对一位保险销售人员的认可。
一般来说,完成百万圆桌会员业绩的三倍就可以成为cot,如果能够完成的六倍的业绩,那么就能成为顶尖会员tot,若是当了十次百万圆桌会员,那么就可以成为终身会员了

03-11
### Chain of Thought Prompt Programming Implementation In the realm of programming with prompts, particularly when aiming to create cohesive and functional code across multiple sessions or contexts, the concept of **Chain of Thought** plays an essential role[^2]. The idea revolves around maintaining a coherent sequence of reasoning within prompts that guide AI models like Qwen2.5-Coder through complex problem-solving tasks. To implement this effectively: #### Maintaining Contextual Continuity When generating code using prompts over different sessions, ensuring continuity is vital. This involves keeping track of variables, functions, classes, and overall logic flow between interactions. By doing so, each new piece of generated code can seamlessly integrate into existing structures without conflicts or inconsistencies. For instance, consider developing a Python application where one session defines core functionalities while another extends these features: ```python # Session 1: Define basic functionality def calculate_area(radius): pi = 3.14159 area = pi * (radius ** 2) return area # Later Sessions: Extend Functionality Based on Previous Definitions class Circle: def __init__(self, radius): self.radius = radius @property def area(self): return calculate_area(self.radius) circle_instance = Circle(5) print(f"The circle's area is {circle_instance.area}") ``` #### Enhancing Prompts Through Hints Occasionally, adding explicit hints directly inside prompts helps steer generation towards desired outcomes more accurately. These hints serve as additional guidance points for refining chains of thought during development processes. However, revising underlying logical flows often yields superior results compared to merely appending instructions at surface levels. An example might involve specifying expected outputs alongside input parameters: ```plaintext Given function `calculate_discount(price, discount_rate)` should output final price after applying given percentage-based reduction; ensure proper handling of edge cases such as negative values or rates exceeding 100%. ``` #### Leveraging Execution Feedback Loops Iteratively improving upon initial attempts by incorporating feedback derived from actual executions enhances both accuracy and reliability of produced codes significantly[^4]. This approach allows developers to identify potential issues early on and address them promptly before they propagate further downstream. A practical demonstration could be seen in crafting SQL queries based on real-time data retrieval patterns observed post-execution analysis: ```sql -- Initial Query Attempt SELECT name FROM users WHERE age > 18; -- Refined Version After Reviewing Results & Adjustments WITH filtered_users AS ( SELECT id, name FROM users WHERE age >= 18 AND status != 'inactive' ) SELECT u.name FROM filtered_users u; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值