任意拉格朗日-欧拉方法(ALE)

任意拉格朗日-欧拉方法(ALE)【一】

任意拉格朗日-欧拉方法(ALE)【一】

半夜弹琵琶

半夜弹琵琶

已关注

你关注的 天蓝色的硫酸铜 赞同

目录

收起

1. ALE表述

2. 位移、速度和加速度

2.1 位移

2.2 速度

2.3 加速度

3. 物质时间导数和梯度

4. 对流速度

5 (欧拉描述下的)雷诺输运定理

6. 欧拉描述下的守恒方程

7. ALE描述下的守恒方程

1. ALE表述

连续介质体�运动的三个瞬间�0,��−1,��的构形: 初始构形Ω0,参考构形Ω^和当前构形Ω,物质点�对应的坐标分别是拉格朗日坐标�, ALE坐标�和欧拉坐标�。

如果当前构形相对初始构形的变换不大时(小变形的情况),始终可取Ω^=Ω0,�=�,即直接取初始构形作为参考构形。 此时,我们只需要在初始构形进行一次网格刨分即可,即网格是静止的。

如果当前构形相对初始构形的变换比较大时(大变形的情况),由于网格畸变,会导致计算精度下降甚至计算错误。一种解决方案就是,在上一离散时刻��−1进行网格重绘,也就是取上一时刻的构形作为参考构形。这种方案就是所谓的任意拉格朗日-欧拉方法(ALE)。

ALE方法而言,假设初始构形相对实验室系是静止的,初始构形到当前构形的运动就是物质运动�,而由于需要在参考构形上进行网格重绘,所以参考构形到当前构形的运动就是网格运动�。

拉格朗日表述下,网格依附于初始构形。欧拉表述下,网格依附于当前构形的固定区域(比如,流体的某个固定部分区域)。ALE表述下,网格运动�独立于物质运动�。

注意ALE描述下的网格运动是一个没有物理意义的人为选择的运动。但是当网格固定在初始构形上时,网格运动就退化成拉格朗日描述下的具有物理意义的物质运动

(物理的)物质运动,如图1描述为:

(1)�=�(�,�) (非物理的)网格运动,如图1描述为:

(2)�=�(�,�)

2. 位移、速度和加速度

2.1 位移

物质运动�=�(�,�) ,对应的物质位移�(�,�),就是当前位置�与初始位置�之差:

(3)�(�,�):=�−�=�(�,�)−� 网格运动�=�(�,�) ,对应的网格位移�^(�,�),就是当前位置�与参考位置�之差:

(4)�^(�,�):=�−�=�(�,�)−�

2.2 速度

物质运动�=�(�,�) ,对应的物质速度�(�,�):

依据(5)�(�,�):=∂�∂�|�=∂�(�,�)∂�=∂�(�,�)∂�⏟依据(3)≡�˙ 其中, ◻|◼表示“保持◼不变”,进而∂◻∂�|�意思是�保持不变的时间导数,被称作物质时间导数,简称物质导数,也就是全导数

网格运动�=�(�,�) ,对应的网格速度�^(�,�):

依据(6)�^(�,�):=∂�∂�|�=∂�(�,�)∂�=∂�^(�,�)∂�⏟依据(4)≡�^,�[�]

2.3 加速度

物质运动�=�(�,�) ,对应的物质加速度�(�,�):

(7)�(�,�):=∂�(�,�)∂�=∂2�(�,�)∂�2≡�¨=�˙ 网格运动�=�(�,�) ,对应的网格加速度�^(�,�):

(8)�^(�,�):=∂�^(�,�)∂�=∂2�^(�,�)∂�2≡�^,��[�]=�^,�[�]

3. 物质时间导数和梯度

首先要明确,物质运动涉及的位移、速度和加速度,都是物理量,而网格运动涉及的位移、速度和加速度,都是非物理的,因为这是人为选择的。

更一般而言,我们把描述物质运动的量,统称物理量(又被称作),是坐标和时间的函数。

物理量(场),可能是标量场矢量场张量场。 考虑到矢量场或张量场的分量就是标量场,所以不妨以标量场�为例。

标量场�可以有三种描述:

欧拉描述拉格朗日描述描述(9)�(�,�)⏟欧拉描述≡�[�]≡�=�(�,�)⏟拉格朗日描述≡�[�]=�∘�=�[�]∘�=�(�,�)⏟ALE描述≡�[�] 类似物质速度的定义(5),也可以求出物理量�在三种描述下的物质时间导数(或全时间导数

拉格朗日描述(10)�˙=d��=∂�(�,�)∂�=∂��[�]≡�,�[�]拉格朗日描述

欧拉描述链式求导简写并依据(11)�˙≡d��≡∂�(�,�)∂�|�≡∂�(�(�,�),�)∂�|�欧拉描述=∂�(�,�)∂�+∂�(�,�)∂�∂�(�,�)∂�链式求导≡�,�+�⋅∇�简写并依据(5)

其中, ∇◻:=∂◻[�]∂�代表欧拉坐标梯度

描述链式求导简写(12)�˙≡d��≡∂�(�,�)∂�|�≡∂�(�(�,�),�)∂�|�ALE描述=∂�(�,�)∂�+∂�(�,�)∂�∂�(�,�)∂�链式求导≡�,�[�]+�⋅∇^�简写

其中, ∇^◻:=∂◻[�]∂�代表ALE坐标梯度,�可解释成物质相对参考构形的速度

(13)�(�,�):=∂�∂�|�=∂�(�,�)∂�

此外,根据图3中 �[�]=�∘� 可得ALE坐标梯度欧拉坐标梯度的关系:

(14)∇^�=∂�[�]∂�=∂�(�(�,�),�)∂�=∂�(�,�)∂�∂�(�,�)∂�=∇� ∇^�

4. 对流速度

速度�、�^和�之间的关系可由图4中 �=�∘� 获得

(15)�(�,�)=�(�(�,�),�)

对(15)两边求物质时间导数,得:

(16a)∂�(�,�)∂�=∂�(�,�)∂�+∇^�∂�(�,�)∂� 利用将(5)(6)(13)代入(16a),得:

(16b)�=�^+�⋅∇^�

进一步可定义对流速度�,即物质和网格之间的相对速度。

(17)�:=�−�^=�⋅∇^�

将(14)代入(12)得ALE描述的物质时间导数的最终形式:

根据(18)�˙=�,�[�]+�⋅(∇� ∇^�)=�,�[�]+(�⋅∇^�)⋅∇�=�,�[�]+�⋅∇�根据(17)

5 (欧拉描述下的)雷诺输运定理

为了建立质量、动量和能量基本守恒定律的积分形式,我们还需要考虑标量函数和矢量函数的积分在流体占据的移动体积上的变化率。

因此考虑由光滑闭合表面 Γ 包围的物质体积 Ω ,在时刻�,以物质速度 �=�(�,�) 移动,其中 �∈Ω 是欧拉坐标。欧拉描述的物理量�(�,�) 体积分的时间导数可表示成(雷诺输运定理,如图5):

(19)dd�∫Ω�d�=∫Ω∂�∂�d�+∫Γ��⋅�d�=∫Ω(∂�∂�+∇⋅(��))d�

6. 欧拉描述下的守恒方程

在欧拉描述下,质量守恒动量守恒能量守恒意味着:

(20a)dd�∫Ω�d�=0

表面张力外力所受总力(20b)dd�∫Ω��d�=∫Γ�⋅�d�⏞表面张力+∫Ω��d�⏞外力⏟Ω所受总力=∫Ω∇⋅�d�+∫Ω��d�

受力下的运动功率(20c)dd�∫Ω��d�=∫Γ(�⋅�)⋅�d�+∫Ω��⋅�d�⏟Ω受力下的运动功率=∫Ω∇⋅(�⋅�)d�+∫Ω��⋅�d�

其中, �是质量密度,� 是物质速度,�表示(对称的)柯西应力张量,�是体力密度,�=�+12�⋅� 是能量密度(单位质量), �则是内能密度(单位质量),并且假设没有热源和热流【否则,(20c)右边还需要添加热源和热流项】。

根据雷诺输运定理(19),并根据Ω的任意性,可得到(20a)对应的的微分方程:

雷诺输运定理时间全导欧拉描述(21)0=�,�+∇⋅(��)⏟(20�)+雷诺输运定理=�,�+�⋅∇�⏟时间全导欧拉描述+�∇⋅�=�˙+�∇⋅�

根据这个结论,我们可以得到密度加权雷诺输运定理:

雷诺输运定理依据时间全导欧拉描述分部求导(22)dd�∫Ω��d�=∫Ω(∂(��)∂�+∇⋅(���))d�雷诺输运定理=∫Ω(�(�,�+∇⋅(��))⏟依据(21)+�(�,�+�⋅∇�⏟时间全导欧拉描述))d�分部求导=∫Ω��˙d�=∫Ω�(�,�+�⋅∇�)d� 注意到(20b)和(20c)等式左边被积量��和��都是密度加权的,所以都可应用密度加权雷诺输运定理(22)。于是这三个守恒律可以改写成(微分方程):

质量动量能量(23)质量:�˙=�,�+�⋅∇�=−�∇⋅�动量:��˙=�(�,�+�⋅∇�)=∇⋅�+��能量:��˙=�(�,�+�⋅∇�)=∇⋅(�⋅�)+��⋅�

请注意,同一方程中的应力项可以改写为

(24)∇⋅(�⋅�)=∂�(�����)=��∂����+���∂���=(∇⋅�)⋅�+�:∇� 其中,◻:◻代表二重点乘,至于点乘、二重点乘和矩阵乘法的区别,举例如下:

  • 矢量点乘,指标右对齐缩并矢量矩阵点乘,指标右对齐缩并矩阵二重点乘,指标右对齐缩并矩阵乘法,相邻指标缩并点乘满足交换性二重点乘满足交换性矩阵乘法不满足交换性点乘和矩阵乘法的关系�⋅�=����矢量点乘,指标右对齐缩并�⋅�=�⋅�=�����矢量矩阵点乘,指标右对齐缩并�:�=������矩阵二重点乘,指标右对齐缩并��=������矩阵乘法,相邻指标缩并�⋅�=�⋅�点乘满足交换性�:�=�:�二重点乘满足交换性��≠��矩阵乘法不满足交换性�⋅�=��≠��点乘和矩阵乘法的关系
  • 矩阵(矢量)乘法,就是相邻指标缩并,不满足交换性。
  • 矩阵(矢量)点乘或二重点乘,就是指标右对齐缩并或是指标右对齐二重缩并,满足交换性。
  • 点乘适用于: 矢量和矢量、矢量和矩阵、矩阵和矢量,一共3种情况
  • 二重点乘适用于: 矩阵和矩阵,只有一种情况
  • 矩阵乘法适用于: 矢量和矢量、矢量和矩阵、矩阵和矢量、矩阵和矩阵,一共4种情况

最后,将�=�+12�⋅�和(24)代入(23c)可得到内能守恒方程

内能部分动能部分第项动量守恒方程第项(25)�(�,�+�⋅∇�)⏞内能部分+��⋅(�,�+(�⋅∇�))⏞动能部分=��⋅�+(∇⋅�)⋅�⏞(24)第1项⏟动量守恒方程(23�)+�:∇�⏞(24)第2项⟹��˙=�(�,�+�⋅∇�)=�:∇�

7. ALE描述下的守恒方程

比较欧拉描述下的物质时间导数(11)和ALE描述下的物质时间导数(18),可看出之间区别或对应:

欧拉描述描述(26)�˙=�,�⏟+�⏟⋅∇�欧拉描述  ⇕   ⇕�˙=�,�[�]⏞+�⏞⋅∇�ALE描述 根据对应关系(26)可以获得欧拉形式守恒方程所对应的ALE 形式,只需将各种对流项中的物质速度 � 替换为对流速度 �=�−�^​​。结果是

质量动量总能量内能(27)质量:�,�[�]+�⋅∇�=−�∇⋅�动量:�(�,�[�]+�⋅∇�)=∇⋅�+��总能量:�(�,�[�]+�⋅∇�)=∇⋅(�⋅�)+��⋅�内能:�(�,�[�]+�⋅∇�)=�:∇� 需要注意的是,方程 (27) 的右侧是以经典欧拉(空间)形式编写的,而网格的任意运动仅反映在左侧。

任意拉格朗日-欧拉方法(ALE)【二】

编辑于 2021-10-12 07:54

「真诚赞赏,手留余香」

任意拉格朗日-欧拉方法(ALE)【一】 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值