CocosCreator构建失败,提示找不到如:xxx/library/imports/ef61b390-6a8b-432e-8943-d390a17bf60b.json

CocosCreator构建失败,提示找不到如:xxx/library/imports/ef61b390-6a8b-432e-8943-d390a17bf60b.json


这个问题的解决方法就是看一下是不是将某个文件拖入的时候失败了,提示红字,可资源文件夹内有没有这个文件,就要去到编译报错提示的imports文件夹下,直接打开那个uuid的json文件,搜索 ef61b390-6a8b-432e-8943-d390a17bf60b 这个名字接发现:

"ef61b390-6a8b-432e-8943-d390a17bf60b": {
    "asset": 1619349582724,
    "meta": 1619349582727,
    "relativePath": "resources\\Data.json"
  },

是这个东西,但是又没有对应的json文件,那就直接删除这段代码就行;
注意,同时将导入失败的文件删除,导入失败的文件,一开始可能不显示,但是在次打开就可以看到了;

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的合、适应度函数的设计以及最终的预测果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值