【7】目标检测之YOLO v4

优化策略

Eliminate grid sensitivity 消除grid的敏感性

在yolov3中,边界框的计算公式为

在这里插入图片描述
在这里插入图片描述
导致只有tx,ty取很大值的时候,bx和by才能落在边界上。因此优化了边界框的计算公式,使得bx和by的取值范围更加合理。
在这里插入图片描述

Mosaic data augumentation Mosaic数据增强

Yolov4中使用的Mosaic是参考2019年提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放,随机裁剪,随机排布的方式进行拼接。
在这里插入图片描述

IOU threshold(match positive samples)

优化了正样本的匹配机制,增加了搜索正样本的grid cell个数,将grid cell中满足IOU大于阈值的先验框都看做正样本。
在这里插入图片描述

在这里插入图片描述
##CIoU loss
使用CIoU loss作为box位置的损失。
在这里插入图片描述

网络结构

Backbone:CSPDarknet53
Neck:SPP,PAN
Head:yolov3
在这里插入图片描述

知识点

CSPDarknet53

CSPDarknet53是在Yolov3主干网络Darknet53的基础上,借鉴2019年的CSPNet的经验,产生的Backbone结构,包含了5个CSP模块。CSPDarknet53的结构如下所示,起到了增强学习能力、降低了计算瓶颈、减少显存使用的作用。
在这里插入图片描述

CBNM

由Conv2d,BatchNorm,Mish三个部分组成
在这里插入图片描述

ResBlock

由两个ConvBNMish和shortcut组成
在这里插入图片描述

SPP结构

SPP实现了多尺度融合
在这里插入图片描述

FPN+PAN结构

在YOLOv4中, FPN+PAN结构产生了三个特征图用作预测,PAN结构中的addshiyongconcate进行替换。

在这里插入图片描述
在这里插入图片描述

损失函数

训练方法

需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》,课程链接 https://edu.csdn.net/course/detail/29865【为什么要学习这门课】 Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. 冗谈不够,放码过来!  代码阅读是从基础到提高的必由之路。尤其对深度学习,许多架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。【课程内容与收获】 本课程将解析YOLOv4的实现原理和源码,具体内容包括:- YOLOv4目标检测原理- 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算- 代码阅读工具及方法- 深度学习计算的利器:BLAS和GEMM- GPU的CUDA编程方法及在darknet的应用- YOLOv4的程序流程- YOLOv4各层及关键技术的源码解析本课程将提供注释后的darknet的源码程序文件。【相关课程】 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括:《YOLOv4目标检测实战:训练自己的数据集》《YOLOv4-tiny目标检测实战:训练自己的数据集》《YOLOv4目标检测实战:人脸口罩佩戴检测》《YOLOv4目标检测实战:中国交通标志识别》建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。【YOLOv4网络模型架构图】 下图由白勇老师绘制  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值