这里写目录标题
优化策略
Eliminate grid sensitivity 消除grid的敏感性
在yolov3中,边界框的计算公式为
导致只有tx,ty取很大值的时候,bx和by才能落在边界上。因此优化了边界框的计算公式,使得bx和by的取值范围更加合理。
Mosaic data augumentation Mosaic数据增强
Yolov4中使用的Mosaic是参考2019年提出的CutMix数据增强的方式,但CutMix只使用了两张图片进行拼接,而Mosaic数据增强则采用了4张图片,随机缩放,随机裁剪,随机排布的方式进行拼接。
IOU threshold(match positive samples)
优化了正样本的匹配机制,增加了搜索正样本的grid cell个数,将grid cell中满足IOU大于阈值的先验框都看做正样本。
##CIoU loss
使用CIoU loss作为box位置的损失。
网络结构
Backbone:CSPDarknet53
Neck:SPP,PAN
Head:yolov3
知识点
CSPDarknet53
CSPDarknet53是在Yolov3主干网络Darknet53的基础上,借鉴2019年的CSPNet的经验,产生的Backbone结构,包含了5个CSP模块。CSPDarknet53的结构如下所示,起到了增强学习能力、降低了计算瓶颈、减少显存使用的作用。
CBNM
由Conv2d,BatchNorm,Mish三个部分组成
ResBlock
由两个ConvBNMish和shortcut组成
SPP结构
SPP实现了多尺度融合
FPN+PAN结构
在YOLOv4中, FPN+PAN结构产生了三个特征图用作预测,PAN结构中的addshiyongconcate进行替换。