实验二 基于点云特征的地理要素提取

1、掌握点云数据的预处理方法和特征计算

2、能够基于点云不同几何特征实现不同地理要素的简要提取

 

三、实验内容及步骤:

1、SOR异常值剔除

1.1、 SOR (Statistical Outlier Removal)是一种点云数据处理中常用的异常值剔除算法。其基本思想是对于每个点,计算其与其邻域内其他点距离的平均值和标准差。如果该点与其邻域内的大多数点相比距离过远,即偏离平均距离超过了一定的标准差阈值,则认为它是一个离群点(outlier),并将其删除或标记。

需要设置两个参数

1)number of points to use for mean distance estimation,即用于计算平均距离的邻域点数;

2)Standard deviation multiplier threshold(nSignma),即标准差阈值的倍数。

1.2、有两个需要设置的参数值,所以在实验时,想要得到最佳的剔除效果,需要使用控制变量法,在固定一个值的情况下更改另一个值,并将得到的结果图对比得到最优的某个参数的值。

而在数次尝试中,通常情况下,number of points to use for mean distance estimation设置为6或8,表示对于每个点考虑其周围6或8个最近邻点的距离;Standard deviation multiplier threshold通常取10左右,这意味着只保留距离平均值不超过10倍标准差的点。

因此在下面的对比实验中,对比图的两个值主要在6和10之间调整,用A,B表示两个值,而在之后使用Excel精细的表示点数的变化时,会从选取多个点的结果值进行对比,

    1.2.1、固定用于计算平均距离的邻域点数为6,更改标准差阈值的参数

A=6 B=8

A=6 B=9

A=6 B=10

A=6 B=7

图 1 不同标准差阈值的离群值剔除结果

根据每次剔除后剩余的点云点数为Y轴,标准差为X轴制成Excel表格,制成图表对比,可以看到在值趋向于10时,值趋于平稳

图2 固定领域点数的Excel表格

1.2.2、固定标准差阈值的参数为10,更改用于计算平均距离的邻域点数为6

A=5 B=10

A=6 B=10

A=7 B=10

A=8 B=10

图3 不同用于计算平均距离的邻域点数的离群值剔除结果

分析上面四幅图

根据每次剔除后剩余的点云点数为Y轴,标准差为X轴制成Excel表格,制成图表对比

图4 固定标准差阈值的Excel表

可以看到,在值趋于5-6左右时,两者差值很小,与小于或者大于它的值差别大

分析:在使用SOR滤波器方法剔除离群点时,number of points to use for mean distance estimation值设为6,Standard deviation multiplier threshold(nSignma)值设为10,在这种情况下,算法将计算每个点与其6个最近邻的平均距离,并根据 nSigma * 标准差阈值过滤距离超出平均距离的点。这种设定可以充分去除离群点,同时保留较大对象的细节和形状特征,所以得到了最佳结果。

2、使用计算几何特征工具中的粗糙度、曲率、密度(表面密度、体积密度)、线性等方法分离道路,树,建筑物三个特征的点

2.1、【Tools】-【Other】-【Compute geometric features】,输入邻域范围,勾选全部计算值以便选取各要素的最优解

图5 勾选全部计算值以便选取各要素的最优解

之后在各点云数据属性的【Active】中可选择各种分割结果供分析

图6  各种计算方法的选择

2.2、打开各算法直方图分析选取出所要分割出的道路,树和建筑物的最佳算法

          2.2.1、对道路的特征点来说,从结果分析发现

Verticality垂直度,linerity线性度和Planarity平面度三个算法对于道路的分割最有效

得到每次算法的结果后,对照直方图和结果图,使用【Filiter By Value】工具设置合适的【Range值】分割出点云数据以供下一步算法的使用

算法

Verticality

(0.6)

Linerity

(0.5)

Planarity

(0.5)

Range值

0-0.0015

0-0.10

0.9-1.0

结果图

直方图

分析:Verticality垂直度:检测道路表面是否水平垂直, 识别出可能存在的高低差或者坡度等问题

linerity线性度:检测道路边缘线或者其他线性特征是否符合预期的直线段或者曲线段

Planarity平面度:检测道路表面是否平整,并可帮助识别出可能存在的凸起、凹陷等问题)

图7 对道路点云数据的分割

2.2.2、对树的特征点来说

Sphericity球形度,Surface variation表面变化率对于树的特征点的分割最有效

得到每次算法的结果后,对照直方图和结果图,使用【Filiter By Value】工具设置合适的【Range值】分割出点云数据以供下一步算法的使用

算法

Sphericity

(0.6)

Surface Variation

(0.5)

Range值

0-0.03

0.16-0.28

结果图

直方图

分析:Sphericity球形度:球形度来帮助确定分割树的层次结构反映了点云数据的“圆滑程度”

图8 对于树点云数据的分割

2.2.3、对建筑物的特征点来说

Verticality垂直度,Sphericity球形度最有效

算法

Verticality

(0.6)

Sphericity

(0.6)

Range值

0.9-1.0

0-0.1

结果图

直方图

分析:Verticality垂直度:建筑物面通常是垂直或近似垂直的平面结构,而其他地物对象则可能存在较大的倾斜角度,差别较大

图9 对于建筑物点云数据的分割

2.3、结果图

所分割要素设为唯一色,跟原始数据叠加对比,三个要素分别有三个局部图,三个完成图。

局部对比图

完成图

建筑物

图10 实验结果图

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
点云是由大量的点组成的三维几何形状,如何从点云数据中提取有效的特征一直是点云处理领域的热点问题。基于深度学习的点云特征提取算法的发展可以分为以下几个阶段: 1. 基于图像处理的点云特征提取方法:最初的点云特征提取方法主要依赖于图像处理中的特征提取方法,例如SIFT、HOG等,将点云数据转换为维图像,然后使用图像处理的方法进行特征提取。 2. 基于手工设计的点云特征提取方法:随着点云处理的发展,研究者们开始探索点云本身的特征。基于手工设计的点云特征提取方法主要有基于形状特征、法向量、曲率等。这些方法需要研究者手动设计特征提取算法,具有一定的主观性和局限性。 3. 基于深度学习的点云特征提取方法:随着深度学习的兴起,研究者们开始将深度学习应用到点云处理中。基于深度学习的点云特征提取方法主要有基于卷积神经网络(CNN)、自编码器(AE)等。这些方法可以自动学习点云数据的特征,具有较好的鲁棒性和普适性。 4. 基于图卷积网络的点云特征提取方法:近年来,图卷积网络(GCN)在图像和文本处理领域取得了很大的成功,研究者们开始将GCN应用到点云处理中。基于GCN的点云特征提取方法可以捕捉点云数据的局部和全局特征,具有较好的性能。 总体而言,基于深度学习的点云特征提取方法在点云处理领域具有广泛的应用前景,未来还有很大的发展空间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值