【计算机物理模拟】-三维实体在笛卡尔坐标系中的数学表达

文章介绍了球体和立方体在三维空间中的数学表示。球的方程为(x-x_c)^2+(y-y_c)^2+(z-z_c)^2=r^2,而立方体的边长为a,中心点坐标(x_c,y_c,z_c)。通过计算各个面的顶点坐标,可以确定立方体的几何形状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

球的方程为:
( x − x c ) 2 + ( y − y c ) 2 + ( z − z c ) 2 = r 2 (x-x_c)^2 + (y-y_c)^2 + (z-z_c)^2 = r^2 (xxc)2+(yyc)2+(zzc)2=r2

在计算机中用两个变量即可表示,球心和半径。

立方体

一个边长为 a a a 的立方体在三维空间中的几何形状是一个正方体,它由六个相等的正方形面组成。我们可以通过计算立方体的中心点坐标和各个面的顶点坐标来确定它的几何形状。

假设立方体的中心点坐标为 ( x c , y c , z c ) (x_c, y_c, z_c) (xc,yc,z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值