pytorch 在sequential中使用view来reshape

pytorch中view是tensor方法,然而在sequential中包装的是nn.module的子类,因此需要自己定义一个方法:

import torch.nn as nn
class Reshape(nn.Module):
    def __init__(self, *args):
        super(Reshape, self).__init__()
        self.shape = args

    def forward(self, x):
        # 如果数据集最后一个batch样本数量小于定义的batch_batch大小,会出现mismatch问题。可以自己修改下,如只传入后面的shape,然后通过x.szie(0),来输入。
        return x.view(self.shape)
class Reshape(nn.Module):
    def __init__(self, *args):
        super(Reshape, self).__init__()
        self.shape = args
    def forward(self, x):
        return x.view((x.size(0),)+self.shape)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值