泰勒公式在不同点处展开有什么不同

这篇答案讲的不错
泰勒级数的展开涉及到一个收敛域 的问题。收敛域可以通过与展开点距离最近的奇点(不可求导点)的距离d来计算,其范围大概就是以展开点为中心,d为半径的圆内。若奇点为虚数,则收敛域则为复空间中以d为半径的球体所包含的区域。

那么,泰勒级数公式在不同的展开点展开有什么不同呢?

1,首先,不同的展开点,其与最近的奇点的距离d是不尽相同的,因此其收敛域是不同的。因为在收敛域之外,泰勒级数是发散的,无法对原函数进行预测,因此选择不同的展开点,对于预测的结果或者说对于可预测性是有影响的。
2,不同的展开点,对于特定的预测任务所需要的计算复杂度不同。当需要估计的点位于收敛域内,且距离展开点较近时,所需要展开的级数就比较小。当需要估计的点位于收敛域外,泰勒级数将无法进行预测。当需要顾及的点位于收敛域内且距离展开点较远时,所需要的计算量就比较大。

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 假设 $f(x)$ 在 $x=0$ 有无限阶导数,则 $f(x)$ 在 $x=0$ 泰勒展开式为: $$f(x) = \sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$ 其中 $f^{(n)}(0)$ 表示 $f(x)$ 在 $x=0$ 的 $n$ 阶导数。特别地,当 $n=0$ 时,$f^{(0)}(0)=f(0)$。 以 $e^x$ 为例,它在 $x=0$ 泰勒展开式为: $$e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!}$$ 当 $n=0$ 时,$e^{(0)}(0)=e^0=1$。当 $n>0$ 时,$e^{(n)}(x)=e^x$,因此 $e^{(n)}(0)=1$。因此,$e^x$ 在 $x=0$ 泰勒展开式为: $$e^x = \sum_{n=0}^{\infty}\frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$ 以下是求任意函数在 $x=0$ 泰勒展开式的 Python 代码: ```python import sympy def taylor(function, x0, n): """ 计算函数在 x0 的 n 阶泰勒展开式 function:原函数 x0:展开点 n:展开式的项数 """ # 定义符号变量 x x = sympy.Symbol('x') # 计算每一项的系数并存入列表中 coef = [] for i in range(n): coef.append(function.diff(x, i).subs(x, x0) / sympy.factorial(i)) # 构造泰勒展开式 taylor = coef[0] for i in range(1, n): taylor = taylor + coef[i] * (x - x0)**i return taylor ``` 使用该函数可以计算 $e^x$ 在 $x=0$ 的前 $5$ 阶泰勒展开式: ```python >>> taylor(sympy.exp(x), 0, 5) x**4/24 + x**3/6 + x**2/2 + x + 1 ``` ### 回答2: 在x = 0泰勒展开公式的计算过程如下: 1. 泰勒展开公式是将一个函数在某点展开成无穷多项的多项式。 2. 首先计算函数在x = 0的0阶导数,即f(0)。 3. 然后计算函数在x = 0的1阶导数,即f'(0)。 4. 接着计算函数在x = 0的2阶导数,即f''(0)。 5. 依次计算函数在x = 0的3阶、4阶、5阶、...阶导数。 6. 根据泰勒展开公式,将函数在0点的导数不同阶数的项带入对应的阶乘因子,并求和。 以下是求泰勒展开式的Python代码: ```python import sympy as sp def taylor_expansion(function, point, order): x = sp.Symbol('x') # 定义符号变量x taylor_series = 0 # 初始化泰勒展开式 for i in range(order + 1): derivative = function.diff(x, i) # 计算函数在指定阶数的导数 taylor_term = (derivative.subs(x, point) / sp.factorial(i)) * (x - point)**i # 泰勒展开项 taylor_series += taylor_term # 求和 return taylor_series # 示例:计算函数sin(x)在x = 0的4阶泰勒展开式 function = sp.sin(x) point = 0 order = 4 taylor = taylor_expansion(function, point, order) print(taylor) ``` 执行代码后,会输出sin(x)在x = 0的4阶泰勒展开式。 ### 回答3: 泰勒展开是一种将一个函数用无穷级数的形式表示的方法,通过在一个特定点(这里为x = 0)展开函数。公式为: f(x) = f(0) + f'(0)x + f''(0)x^2/2! + f'''(0)x^3/3! + ... 计算过程如下: 1. 首先求函数f(x)在x = 0的值,即f(0)。 2. 然后求函数f(x)在x = 0的一阶导数,即f'(0)。 3. 接下来求函数f(x)在x = 0的二阶导数,即f''(0)。 4. 再进一步求函数f(x)在x = 0的三阶导数,即f'''(0)。 5. 以此类推,求出函数f(x)在x = 0的四阶导数、五阶导数、六阶导数... 根据泰勒展开公式的计算过程,我们可以编写如下代码来求泰勒展开式: ```python import math def taylor_expansion(x, n): result = 0 for i in range(n): result += (math.sin(0)**i) * (x**i) / math.factorial(i) return result # 设置展开点x=0,展开式阶数n=4 x = 0 n = 4 # 调用函数计算展开结果 result = taylor_expansion(x, n) print(result) ``` 以上代码中,我们以sin(x)为例,计算其在x = 0泰勒展开式。根据传入的展开点x和展开式阶数n,通过循环计算每一项的值,并累加到result中,最后返回展开结果。在这个例子中,我们计算了展开点x = 0的4阶泰勒展开式的结果并打印输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值