一、一元函数的泰勒展开
学习微分概念时已知,若
f
f
f 在点
x
0
x_0
x0 处可导,则有
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
o
(
x
−
x
0
)
f(x)=f(x_0)+f'(x_0)(x-x_0)+o(x-x_0)
f(x)=f(x0)+f′(x0)(x−x0)+o(x−x0) 式子可以这样理解,在点
x
0
x_0
x0 附近,用一次多项式
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
\small f(x_0)+f'(x_0)(x-x_0)
f(x0)+f′(x0)(x−x0) 近似函数
f
(
x
)
\small f(x)
f(x) 时,其误差为
(
x
−
x
0
)
\small (x-x_0)
(x−x0) 的高阶无穷小量. 但在许多场合,这样的精度是不够的,因此需要更高次数的多项式来逼近,并要求误差为
o
(
(
x
−
x
0
)
n
)
\small o\big((x-x_0)^n\big)
o((x−x0)n),其中
n
n
n 为多项式的次数.
为此,考察任意
n
n
n 次多项式
p
n
(
x
)
p_n(x)
pn(x),其可以表示为
p
n
(
x
)
=
a
n
(
x
−
x
0
)
n
+
a
n
−
1
(
x
−
x
0
)
n
−
1
+
⋯
+
a
1
(
x
−
x
0
)
+
a
0
p_n(x)=a_n(x-x_0)^n+a_{n-1}(x-x_0)^{n-1}+\cdots+a_1(x-x_0)+a_0
pn(x)=an(x−x0)n+an−1(x−x0)n−1+⋯+a1(x−x0)+a0两端取
x
0
x_0
x0 处的各阶导数,得
p
n
(
x
0
)
=
a
0
,
p
n
′
(
x
0
)
=
a
1
,
p
n
′
′
(
x
0
)
=
2
!
a
2
,
⋯
,
p
n
(
n
)
(
x
0
)
=
n
!
a
n
p_n(x_0)=a_0,\,p_n'(x_0)=a_1,\,p_n''(x_0)=2!\,a_2,\,\cdots,\,p_n^{(n)}(x_0)=n!\,a_n
pn(x0)=a0,pn′(x0)=a1,pn′′(x0)=2!a2,⋯,pn(n)(x0)=n!an则
a
0
=
p
n
(
x
0
)
,
a
1
=
p
n
′
(
x
0
)
,
a
2
=
p
n
′
′
(
x
0
)
2
!
,
⋯
,
a
n
=
p
n
(
n
)
(
x
0
)
n
!
a_0=p_n(x_0),\,a_1=p_n'(x_0),\,a_2=\frac{p_n''(x_0)}{2!},\,\cdots,\,a_n=\frac{p_n^{(n)}(x_0)}{n!}
a0=pn(x0),a1=pn′(x0),a2=2!pn′′(x0),⋯,an=n!pn(n)(x0)所以
p
n
(
x
)
=
p
n
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
p
n
(
n
−
1
)
(
x
0
)
(
n
−
1
)
!
(
x
−
x
0
)
n
−
1
+
⋯
+
p
n
′
(
x
0
)
(
x
−
x
0
)
+
p
(
x
0
)
=
p
(
x
0
)
+
p
n
′
(
x
0
)
(
x
−
x
0
)
+
⋯
+
p
n
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
=
∑
k
=
0
n
p
n
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
\begin{aligned} p_n(x)&=\frac{p_n^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{p_n^{(n-1)}(x_0)}{(n-1)!}(x-x_0)^{n-1}+\cdots+p_n'(x_0)(x-x_0)+p(x_0)\\& =p(x_0)+p_n'(x_0)(x-x_0)+\cdots+\frac{p_n^{(n)}(x_0)}{n!}(x-x_0)^n\\&=\sum_{k=0}^n\frac{p_n^{(k)}(x_0)}{k!}(x-x_0)^k \end{aligned}
pn(x)=n!pn(n)(x0)(x−x0)n+(n−1)!pn(n−1)(x0)(x−x0)n−1+⋯+pn′(x0)(x−x0)+p(x0)=p(x0)+pn′(x0)(x−x0)+⋯+n!pn(n)(x0)(x−x0)n=k=0∑nk!pn(k)(x0)(x−x0)k 对于一般的函数
f
f
f,设其在点
x
0
x_0
x0 存在直到
n
n
n 阶的导数,构造
n
n
n 次多项式
T
n
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
T_n(x)=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n
Tn(x)=k=0∑nk!f(k)(x0)(x−x0)k=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n容易验证
T
n
(
k
)
(
x
0
)
=
f
(
k
)
(
x
0
)
,
k
=
0
,
1
,
2
,
⋯
,
n
(*)
T_n^{(k)}(x_0)=f^{(k)}(x_0),k=0,1,2,\cdots,n \tag{*}
Tn(k)(x0)=f(k)(x0),k=0,1,2,⋯,n(*) 下面证明:用
T
n
(
x
)
\small T_n(x)
Tn(x) 逼近
f
(
x
)
\small f(x)
f(x) 时,其误差是
(
x
−
x
0
)
n
\small (x-x_0)^n
(x−x0)n 的高阶无穷小量,即
f
(
x
)
−
T
n
(
x
)
=
o
(
(
x
−
x
0
)
n
)
f(x)-T_n(x)=o\big((x-x_0)^n\big)
f(x)−Tn(x)=o((x−x0)n)证明: 设
R
n
(
x
)
=
f
(
x
)
−
T
n
(
x
)
,
Q
n
(
x
)
=
(
x
−
x
0
)
n
R_n(x)=f(x)-T_n(x),\,Q_n(x)=(x-x_0)^n
Rn(x)=f(x)−Tn(x),Qn(x)=(x−x0)n要证
lim
x
→
x
0
R
n
(
x
)
Q
n
(
x
)
=
0
\lim_{x\to x_0}\frac{R_n(x)}{Q_n(x)}=0
x→x0limQn(x)Rn(x)=0由式
(
∗
)
(*)
(∗) 可知,
R
n
(
x
0
)
=
R
n
′
(
x
0
)
=
⋯
=
R
n
(
n
)
(
x
0
)
=
0
R_n(x_0)=R_n'(x_0)=\cdots=R_n^{(n)}(x_0)=0
Rn(x0)=Rn′(x0)=⋯=Rn(n)(x0)=0并易知
Q
n
(
x
0
)
=
Q
n
′
(
x
0
)
=
⋯
=
Q
n
(
n
−
1
)
(
x
0
)
=
0
,
Q
n
(
n
)
(
x
0
)
=
n
!
Q_n(x_0)=Q_n'(x_0)=\cdots=Q_n^{(n-1)}(x_0)=0,\,Q_n^{(n)}(x_0)=n!
Qn(x0)=Qn′(x0)=⋯=Qn(n−1)(x0)=0,Qn(n)(x0)=n!使用
(
n
−
1
)
(n-1)
(n−1) 次洛必达法则(至于为什么不是
n
n
n 次,留给读者思考),得
lim
x
→
x
0
R
n
(
x
)
Q
n
(
x
)
=
lim
x
→
x
0
R
n
′
(
x
)
Q
n
′
(
x
)
=
⋯
=
lim
x
→
x
0
R
n
(
n
−
1
)
(
x
)
Q
n
(
n
−
1
)
(
x
)
=
lim
x
→
x
0
f
(
n
−
1
)
(
x
)
−
(
f
(
n
−
1
)
(
x
0
)
+
f
(
n
)
(
x
0
)
(
x
−
x
0
)
)
n
(
n
−
1
)
⋯
2
(
x
−
x
0
)
=
1
n
!
lim
x
→
x
0
[
f
(
n
−
1
)
(
x
)
−
f
(
n
−
1
)
(
x
0
)
x
−
x
0
−
f
(
n
)
(
x
0
)
]
=
0
(根据导数定义)
\begin{aligned} \lim_{x\to x_0}\frac{R_n(x)}{Q_n(x)}&=\lim_{x\to x_0}\frac{R_n'(x)}{Q_n'(x)}=\cdots=\lim_{x\to x_0}\frac{R_n^{(n-1)}(x)}{Q_n^{(n-1)}(x)}\\&=\lim_{x\to x_0}\frac{f^{(n-1)}(x)-(f^{(n-1)}(x_0)+f^{(n)}(x_0)(x-x_0))}{n(n-1)\cdots2(x-x_0)}\\& =\frac{1}{n!}\lim_{x\to x_0}\Big[\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}-f^{(n)}(x_0)\Big]\\&=0\quad \textbf{(根据导数定义)} \end{aligned}
x→x0limQn(x)Rn(x)=x→x0limQn′(x)Rn′(x)=⋯=x→x0limQn(n−1)(x)Rn(n−1)(x)=x→x0limn(n−1)⋯2(x−x0)f(n−1)(x)−(f(n−1)(x0)+f(n)(x0)(x−x0))=n!1x→x0lim[x−x0f(n−1)(x)−f(n−1)(x0)−f(n)(x0)]=0(根据导数定义)所以
f
(
x
)
−
T
n
(
x
)
=
o
(
(
x
−
x
0
)
n
)
f(x)-T_n(x)=o\big((x-x_0)^n\big)
f(x)−Tn(x)=o((x−x0)n)
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
o
(
(
x
−
x
0
)
n
)
f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o\big((x-x_0)^n\big)
f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+o((x−x0)n) 上式也被称为 带有
Peano
\textrm{Peano}
Peano 型余项 的泰勒公式. 美中不足的是,只给出了余项的定性估计. 现在呢,我们想构造一个定量形式的余项,以便对误差进行具体计算或估计.
作辅助函数
F
(
t
)
=
f
(
x
)
−
[
f
(
t
)
+
f
′
(
t
)
(
x
−
t
)
+
f
′
′
(
t
)
2
!
(
x
−
t
)
2
+
⋯
+
f
(
n
)
(
t
)
n
!
(
x
−
t
)
n
]
F(t)=f(x)-[f(t)+f'(t)(x-t)+\frac{f''(t)}{2!}(x-t)^2+\cdots+\frac{f^{(n)}(t)}{n!}(x-t)^n]
F(t)=f(x)−[f(t)+f′(t)(x−t)+2!f′′(t)(x−t)2+⋯+n!f(n)(t)(x−t)n]
G
(
t
)
=
(
x
−
t
)
n
+
1
G(t)=(x-t)^{n+1}
G(t)=(x−t)n+1不妨设
x
0
<
x
x_0<x
x0<x,则
F
(
t
)
\small F(t)
F(t) 与
G
(
t
)
\small G(t)
G(t) 在
[
x
0
,
x
]
[x_0,x]
[x0,x] 上连续,在
(
x
0
,
x
)
(x_0,x)
(x0,x) 上可导,且
F
′
(
t
)
=
−
[
f
′
(
t
)
+
(
f
′
′
(
t
)
(
x
−
t
)
−
f
′
(
t
)
)
+
(
f
′
′
′
(
t
)
2
!
(
x
−
t
)
2
−
f
′
′
(
t
)
(
x
−
t
)
)
+
⋯
+
(
f
(
n
+
1
)
(
t
)
n
!
(
x
−
t
)
n
−
f
(
n
)
(
t
)
(
n
−
1
)
!
(
x
−
t
)
n
−
1
)
]
=
(
−
1
)
[
f
′
(
t
)
+
∑
k
=
1
n
(
f
(
k
+
1
)
(
t
)
k
!
(
x
−
t
)
k
−
f
(
k
)
(
t
)
(
k
−
1
)
!
(
x
−
t
)
k
−
1
)
]
=
(
−
1
)
[
∑
k
=
0
n
f
(
k
+
1
)
(
t
)
k
!
(
x
−
t
)
k
−
∑
k
=
0
n
−
1
f
(
k
+
1
)
(
t
)
k
!
(
x
−
t
)
k
]
=
−
f
(
n
+
1
)
(
t
)
n
!
(
x
−
t
)
n
\begin{aligned} F'(t)=&-\Big[f'(t)+\Big(f''(t)(x-t)-f'(t)\Big)+\Big(\frac{f'''(t)}{2!}(x-t)^2-f''(t)(x-t)\Big)+\cdots\\&+\Big(\frac{f^{(n+1)}(t)}{n!}(x-t)^n-\frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}\Big)\Big]\\ =&(-1)\Big[f'(t)+\sum_{k=1}^n\Big(\frac{f^{(k+1)}(t)}{k!}(x-t)^k-\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1}\Big)\Big]\\=&(-1)\Big[\sum_{k=0}^n\frac{f^{(k+1)}(t)}{k!}(x-t)^k-\sum_{k=0}^{n-1}\frac{f^{(k+1)}(t)}{k!}(x-t)^{k}\Big]\\=&-\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}\\ \end{aligned}
F′(t)====−[f′(t)+(f′′(t)(x−t)−f′(t))+(2!f′′′(t)(x−t)2−f′′(t)(x−t))+⋯+(n!f(n+1)(t)(x−t)n−(n−1)!f(n)(t)(x−t)n−1)](−1)[f′(t)+k=1∑n(k!f(k+1)(t)(x−t)k−(k−1)!f(k)(t)(x−t)k−1)](−1)[k=0∑nk!f(k+1)(t)(x−t)k−k=0∑n−1k!f(k+1)(t)(x−t)k]−n!f(n+1)(t)(x−t)n
G
′
(
t
)
=
−
(
n
+
1
)
(
x
−
t
)
n
G'(t)=-(n+1)(x-t)^n
G′(t)=−(n+1)(x−t)n因为
F
(
x
)
=
G
(
x
)
=
0
\small F(x)=G(x)=0
F(x)=G(x)=0,由柯西中值定理,得
F
(
x
0
)
G
(
x
0
)
=
F
(
x
0
)
−
F
(
x
)
G
(
x
0
)
−
G
(
x
)
=
F
′
(
ξ
)
G
′
(
ξ
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
\frac{F(x_0)}{G(x_0)}=\frac{F(x_0)-F(x)}{G(x_0)-G(x)}=\frac{F'(\xi)}{G'(\xi)}=\frac{f^{(n+1)}(\xi)}{(n+1)!}
G(x0)F(x0)=G(x0)−G(x)F(x0)−F(x)=G′(ξ)F′(ξ)=(n+1)!f(n+1)(ξ)其中
ξ
∈
(
x
0
,
x
)
\xi\in(x_0,x)
ξ∈(x0,x),则
F
(
x
0
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
G
(
x
0
)
F(x_0)=\frac{f^{(n+1)}(\xi)}{(n+1)!}G(x_0)
F(x0)=(n+1)!f(n+1)(ξ)G(x0)将
F
,
G
\small F,G
F,G 表达式代入,得
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(ξ)(x−x0)n+1所以
R
n
(
x
)
=
f
(
x
)
−
T
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x)=f(x)-T_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
Rn(x)=f(x)−Tn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1称为
Lagrange
\textrm{Lagrange}
Lagrange 型余项,当
n
=
0
n=0
n=0 时,
f
(
x
)
−
f
(
x
0
)
=
f
′
(
ξ
)
(
x
−
x
0
)
f(x)-f(x_0)=f'(\xi)(x-x_0)
f(x)−f(x0)=f′(ξ)(x−x0)为
Lagrange
\textrm{Lagrange}
Lagrange 中值公式.
借用算法分析中的记号,余项
R
n
(
x
)
R_n(x)
Rn(x) 还可以表示为以下两种形式.
O
(
(
x
−
x
0
)
n
+
1
)
Θ
(
(
x
−
x
0
)
n
+
1
)
O\big((x-x_0)^{n+1}\big)\quad\Theta\big((x-x_0)^{n+1}\big)
O((x−x0)n+1)Θ((x−x0)n+1)不过最为准确的表述还是
Lagrange
\textrm{Lagrange}
Lagrange 型余项. 余项还有两种表示形式,分别是 积分型余项 和 柯西余项,在此不作介绍,感兴趣的读者可以自己了解下.
二、从一元到多元
至于多元函数的泰勒展开,下以二元函数
f
(
x
,
y
)
\small f(x,y)
f(x,y) 为例,进行说明,想在点
(
x
0
,
y
0
)
\small (x_0,y_0)
(x0,y0) 的某一邻域内进行泰勒展开. 设邻域内任意一点
(
x
0
+
h
,
y
0
+
k
)
\small (x_0+h,y_0+k)
(x0+h,y0+k),先作辅助函数
ϕ
(
t
)
=
f
(
x
0
+
t
h
,
y
0
+
t
k
)
\phi(t)=f(x_0+th,y_0+tk)
ϕ(t)=f(x0+th,y0+tk)则
ϕ
(
0
)
=
f
(
x
0
,
y
0
)
,
ϕ
(
1
)
=
f
(
x
0
+
h
,
y
0
+
k
)
\phi(0)=f(x_0,y_0),\,\phi(1)=f(x_0+h,y_0+k)
ϕ(0)=f(x0,y0),ϕ(1)=f(x0+h,y0+k)先考虑
ϕ
(
t
)
\phi(t)
ϕ(t) 的
n
n
n 阶导函数
ϕ
′
(
t
)
=
f
x
(
x
0
+
t
h
,
y
0
+
t
k
)
h
+
f
y
(
x
0
+
t
h
,
y
0
+
t
k
)
k
ϕ
′
′
(
t
)
=
f
x
x
(
x
0
+
t
h
,
y
0
+
t
k
)
h
2
+
f
x
y
(
x
0
+
t
h
,
y
0
+
t
k
)
h
k
+
f
y
x
(
x
0
+
t
h
,
y
0
+
t
k
)
k
h
+
f
y
y
(
x
0
+
t
h
,
y
0
+
t
k
)
k
2
=
(
h
∂
∂
x
+
k
∂
∂
y
)
2
f
(
x
0
+
t
h
,
y
0
+
t
k
)
\begin{aligned} \phi'(t)=&f_x(x_0+th,y_0+tk)h+f_y(x_0+th,y_0+tk)k\\ \phi''(t)=&f_{xx}(x_0+th,y_0+tk)h^2+f_{xy}(x_0+th,y_0+tk)hk+\\&f_{yx}(x_0+th,y_0+tk)kh+f_{yy}(x_0+th,y_0+tk)k^2\\=& (h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^2f(x_0+th,y_0+tk) \end{aligned}
ϕ′(t)=ϕ′′(t)==fx(x0+th,y0+tk)h+fy(x0+th,y0+tk)kfxx(x0+th,y0+tk)h2+fxy(x0+th,y0+tk)hk+fyx(x0+th,y0+tk)kh+fyy(x0+th,y0+tk)k2(h∂x∂+k∂y∂)2f(x0+th,y0+tk)依次类推,或用数学归纳法,可以得到以下结论
ϕ
(
n
)
(
t
)
=
∑
p
=
0
n
C
n
p
h
p
k
n
−
p
∂
n
f
∂
x
p
∂
y
n
−
p
∣
(
x
0
+
t
h
,
y
0
+
t
k
)
=
(
h
∂
∂
x
+
k
∂
∂
y
)
n
f
(
x
0
+
t
h
,
y
0
+
t
k
)
\begin{aligned} \phi^{(n)}(t)=\sum_{p=0}^nC_n^ph^pk^{n-p}\frac{\partial^{n}f}{\partial x^p\partial y^{n-p}}\Big|_{(x_0+th,y_0+tk)}=(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n}f(x_0+th,y_0+tk) \end{aligned}
ϕ(n)(t)=p=0∑nCnphpkn−p∂xp∂yn−p∂nf
(x0+th,y0+tk)=(h∂x∂+k∂y∂)nf(x0+th,y0+tk)由一元函数的泰勒展式,将
ϕ
(
t
)
\phi(t)
ϕ(t) 在点
0
0
0 处泰勒展开
f
(
x
0
+
h
,
y
0
+
k
)
=
ϕ
(
1
)
=
ϕ
(
0
)
+
ϕ
′
(
0
)
+
⋯
+
ϕ
(
n
)
(
0
)
n
!
+
ϕ
(
n
+
1
)
(
θ
)
(
n
+
1
)
!
=
f
(
x
0
,
y
0
)
+
∑
p
=
1
n
1
p
!
(
h
∂
∂
x
+
k
∂
∂
y
)
p
f
(
x
0
,
y
0
)
+
1
(
n
+
1
)
!
(
h
∂
∂
x
+
k
∂
∂
y
)
n
+
1
f
(
x
0
+
θ
h
,
y
0
+
θ
k
)
=
f
(
x
0
,
y
0
)
+
∑
p
=
1
n
1
p
!
(
h
∂
∂
x
+
k
∂
∂
y
)
p
f
(
x
0
,
y
0
)
+
Θ
(
ρ
n
+
1
)
=
f
(
x
0
,
y
0
)
+
∑
p
=
1
n
1
p
!
(
h
∂
∂
x
+
k
∂
∂
y
)
p
f
(
x
0
,
y
0
)
+
O
(
ρ
n
+
1
)
=
f
(
x
0
,
y
0
)
+
∑
p
=
1
n
1
p
!
(
h
∂
∂
x
+
k
∂
∂
y
)
p
f
(
x
0
,
y
0
)
+
o
(
ρ
n
)
\begin{aligned} f(x_0+h,y_0+k)=&\phi(1)=\phi(0)+\phi'(0)+\cdots+\frac{\phi^{(n)}(0)}{n!}+\frac{\phi^{(n+1)}(\theta)}{(n+1)!}\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)\\&+\frac{1}{(n+1)!}{(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1}}f(x_0+\theta h,y_0+\theta k)\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)+\Theta(\rho^{n+1})\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)+O(\rho^{n+1})\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)+o(\rho^{n}) \end{aligned}
f(x0+h,y0+k)=====ϕ(1)=ϕ(0)+ϕ′(0)+⋯+n!ϕ(n)(0)+(n+1)!ϕ(n+1)(θ)f(x0,y0)+p=1∑np!1(h∂x∂+k∂y∂)pf(x0,y0)+(n+1)!1(h∂x∂+k∂y∂)n+1f(x0+θh,y0+θk)f(x0,y0)+p=1∑np!1(h∂x∂+k∂y∂)pf(x0,y0)+Θ(ρn+1)f(x0,y0)+p=1∑np!1(h∂x∂+k∂y∂)pf(x0,y0)+O(ρn+1)f(x0,y0)+p=1∑np!1(h∂x∂+k∂y∂)pf(x0,y0)+o(ρn)其中
ρ
=
h
2
+
k
2
\rho=\sqrt{h^2+k^2}
ρ=h2+k2.
对于 n n n 元函数的泰勒展开,可利用相同的思想进行推导,在此就不赘述了.
学数学嘛,重要的是学其中的思想——"道"也,而非“术”也.
揭秘:不使用
n
n
n 次洛必达法则原因:
因为
f
(
n
)
(
x
0
)
\small f^{(n)}(x_0)
f(n)(x0) 存在,所以在
x
0
x_0
x0 的邻域
U
(
x
0
)
\small U(x_0)
U(x0) 上
f
f
f 存在
n
−
1
n-1
n−1 阶导函数
f
(
n
−
1
)
(
x
)
\small f^{(n-1)}(x)
f(n−1)(x),但不一定存在
n
n
n 阶导函数(肯定会有人这样问,要是存在了怎么办?那就多展开一项啊,hhh),所以只能使用
(
n
−
1
)
(n-1)
(n−1) 次洛必达法则.
三、拓展升华
对一元函数,我们得到了以下结论:
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
+
⋯
=
f
(
x
0
)
+
f
′
(
x
0
)
Δ
x
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
Δ
x
)
n
+
⋯
\begin{aligned} f(x)&=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\cdots\\&= f(x_0)+f'(x_0)\Delta x+\cdots+\frac{f^{(n)}(x_0)}{n!}(\Delta x)^n+\cdots \end{aligned}
f(x)=f(x0)+f′(x0)(x−x0)+⋯+n!f(n)(x0)(x−x0)n+⋯=f(x0)+f′(x0)Δx+⋯+n!f(n)(x0)(Δx)n+⋯
特别地,对于指数函数
e
x
e^x
ex,有
exp
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
n
!
+
⋯
\exp(x)=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\cdots
exp(x)=1+x+2!x2+⋯+n!xn+⋯
对二元函数,我们有
f
(
x
0
+
Δ
x
,
y
0
+
Δ
y
)
=
f
(
x
0
,
y
0
)
+
∑
p
=
1
n
1
p
!
(
Δ
x
∂
∂
x
+
Δ
y
∂
∂
y
)
p
f
(
x
0
,
y
0
)
+
⋯
f(x_0+\Delta x,y_0+\Delta y)=f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial y})^pf(x_0,y_0)+\cdots
f(x0+Δx,y0+Δy)=f(x0,y0)+p=1∑np!1(Δx∂x∂+Δy∂y∂)pf(x0,y0)+⋯
下面对这两种形式进行泛化,引入恒等算子
I
I
I,定义如下
I
f
=
f
If=f
If=f
引入求导算子
D
D
D,定义如下
D
f
=
d
f
d
x
Df=\frac{df}{dx}
Df=dxdf
则
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
Δ
x
+
⋯
+
f
(
n
)
(
x
0
)
n
!
(
Δ
x
)
n
+
⋯
=
(
f
+
Δ
x
f
′
+
⋯
+
(
Δ
x
)
n
f
(
n
)
n
!
+
⋯
)
∣
x
=
x
0
=
(
(
I
+
Δ
x
D
+
⋯
+
(
Δ
x
D
)
n
n
!
+
⋯
)
f
)
∣
x
=
x
0
=
(
exp
(
Δ
x
D
)
f
)
∣
x
=
x
0
\begin{aligned} f(x)&=f(x_0)+f'(x_0)\Delta x+\cdots+\frac{f^{(n)}(x_0)}{n!}(\Delta x)^n+\cdots\\&= (f+\Delta xf'+\cdots+(\Delta x)^n\frac{f^{(n)}}{n!}+\cdots)\Big|_{x=x_0}\\&= \big((I+\Delta xD+\cdots+\frac{(\Delta xD)^n}{n!}+\cdots)f\big)\Big|_{x=x_0}\\&=\big(\exp(\Delta xD)f\big)\Big|_{x=x_0} \end{aligned}
f(x)=f(x0)+f′(x0)Δx+⋯+n!f(n)(x0)(Δx)n+⋯=(f+Δxf′+⋯+(Δx)nn!f(n)+⋯)
x=x0=((I+ΔxD+⋯+n!(ΔxD)n+⋯)f)
x=x0=(exp(ΔxD)f)
x=x0
同理,对二元函数,有
f
(
x
,
y
)
=
(
exp
(
Δ
x
D
x
+
Δ
y
D
y
)
f
)
∣
(
x
,
y
)
=
(
x
0
,
y
0
)
f(x,y)=\big(\exp(\Delta xD_x+\Delta yD_y)f\big)\Big|_{(x,y)=(x_0,y_0)}
f(x,y)=(exp(ΔxDx+ΔyDy)f)
(x,y)=(x0,y0)
其中 D x f = ∂ f ∂ x , D y f = ∂ f ∂ y \displaystyle D_xf=\frac{\partial f}{\partial x}, D_yf=\frac{\partial f}{\partial y} Dxf=∂x∂f,Dyf=∂y∂f.
对
n
n
n 元函数,有
f
(
x
1
,
x
2
,
⋯
,
x
n
)
=
exp
(
Δ
x
1
D
x
1
+
Δ
x
2
D
x
2
+
⋯
+
Δ
x
n
D
x
n
)
f
(
x
10
,
x
20
,
⋯
,
x
n
0
)
f(x_1,x_2,\cdots,x_n)=\exp(\Delta x_1D_{x_1}+\Delta x_2D_{x_2}+\cdots+\Delta x_nD_{x_n})f(x_{10},x_{20},\cdots,x_{n0})
f(x1,x2,⋯,xn)=exp(Δx1Dx1+Δx2Dx2+⋯+ΔxnDxn)f(x10,x20,⋯,xn0)
其中
D
x
i
f
=
∂
f
∂
x
i
,
i
=
1
,
2
,
⋯
,
n
D_{x_i}f=\frac{\partial f}{\partial x_i},i=1,2,\cdots,n
Dxif=∂xi∂f,i=1,2,⋯,n
令 x = ( x 1 , x 2 , ⋯ , x n ) T , x 0 = ( x 10 , x 20 , ⋯ , x n 0 ) T , x=(x_1,x_2,\cdots,x_n)^T,x_0=(x_{10},x_{20},\cdots,x_{n0})^T, x=(x1,x2,⋯,xn)T,x0=(x10,x20,⋯,xn0)T,
Δ x = x − x 0 = ( Δ x 1 , Δ x 2 , ⋯ , Δ x n ) T , ∇ = ( D x 1 , D x 2 , ⋯ , D x n ) T , \Delta x=x-x_0=(\Delta x_1,\Delta x_2,\cdots,\Delta x_n)^T,\nabla=(D_{x_1},D_{x_2},\cdots,D_{x_n})^T, Δx=x−x0=(Δx1,Δx2,⋯,Δxn)T,∇=(Dx1,Dx2,⋯,Dxn)T,
则
Δ
x
1
D
x
1
+
Δ
x
2
D
x
2
+
⋯
+
Δ
x
n
D
x
n
=
(
Δ
x
)
T
∇
\Delta x_1D_{x_1}+\Delta x_2D_{x_2}+\cdots+\Delta x_nD_{x_n}=(\Delta x)^T\nabla
Δx1Dx1+Δx2Dx2+⋯+ΔxnDxn=(Δx)T∇
f
(
x
)
=
(
exp
(
(
Δ
x
)
T
∇
)
f
)
∣
x
=
x
0
f(x)=\Big(\exp\big((\Delta x)^T\nabla\big)f\Big)\Big|_{x=x_0}
f(x)=(exp((Δx)T∇)f)
x=x0
参考文献:
1.华东师范大学数学系.数学分析(上下册)[M].第四版.北京:高等教育出版社,2010.
2.戴嘉尊.微分方程数值解法[M].第二版.南京:东南大学出版社,2012.