泰勒展式推导及算子表示

本文详细探讨了一元和多元函数的泰勒展开,解析了泰勒公式的一般形式及其余项,包括Lagrange型余项。通过引入恒等算子I和求导算子D,将泰勒公式与指数函数联系起来,并推广到多元函数,展示了一种通用的表达方式。文章还讨论了洛必达法则在泰勒展开中的应用限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、一元函数的泰勒展开

  学习微分概念时已知,若 f f f 在点 x 0 x_0 x0 处可导,则有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + o ( x − x 0 ) f(x)=f(x_0)+f'(x_0)(x-x_0)+o(x-x_0) f(x)=f(x0)+f(x0)(xx0)+o(xx0)  式子可以这样理解,在点 x 0 x_0 x0 附近,用一次多项式 f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) \small f(x_0)+f'(x_0)(x-x_0) f(x0)+f(x0)(xx0) 近似函数 f ( x ) \small f(x) f(x) 时,其误差为 ( x − x 0 ) \small (x-x_0) (xx0) 的高阶无穷小量. 但在许多场合,这样的精度是不够的,因此需要更高次数的多项式来逼近,并要求误差为 o ( ( x − x 0 ) n ) \small o\big((x-x_0)^n\big) o((xx0)n),其中 n n n 为多项式的次数.

  为此,考察任意 n n n 次多项式 p n ( x ) p_n(x) pn(x),其可以表示为
p n ( x ) = a n ( x − x 0 ) n + a n − 1 ( x − x 0 ) n − 1 + ⋯ + a 1 ( x − x 0 ) + a 0 p_n(x)=a_n(x-x_0)^n+a_{n-1}(x-x_0)^{n-1}+\cdots+a_1(x-x_0)+a_0 pn(x)=an(xx0)n+an1(xx0)n1++a1(xx0)+a0两端取 x 0 x_0 x0 处的各阶导数,得
p n ( x 0 ) = a 0 ,   p n ′ ( x 0 ) = a 1 ,   p n ′ ′ ( x 0 ) = 2 !   a 2 ,   ⋯   ,   p n ( n ) ( x 0 ) = n !   a n p_n(x_0)=a_0,\,p_n'(x_0)=a_1,\,p_n''(x_0)=2!\,a_2,\,\cdots,\,p_n^{(n)}(x_0)=n!\,a_n pn(x0)=a0,pn(x0)=a1,pn′′(x0)=2!a2,,pn(n)(x0)=n!an a 0 = p n ( x 0 ) ,   a 1 = p n ′ ( x 0 ) ,   a 2 = p n ′ ′ ( x 0 ) 2 ! ,   ⋯   ,   a n = p n ( n ) ( x 0 ) n ! a_0=p_n(x_0),\,a_1=p_n'(x_0),\,a_2=\frac{p_n''(x_0)}{2!},\,\cdots,\,a_n=\frac{p_n^{(n)}(x_0)}{n!} a0=pn(x0),a1=pn(x0),a2=2!pn′′(x0),,an=n!pn(n)(x0)所以
p n ( x ) = p n ( n ) ( x 0 ) n ! ( x − x 0 ) n + p n ( n − 1 ) ( x 0 ) ( n − 1 ) ! ( x − x 0 ) n − 1 + ⋯ + p n ′ ( x 0 ) ( x − x 0 ) + p ( x 0 ) = p ( x 0 ) + p n ′ ( x 0 ) ( x − x 0 ) + ⋯ + p n ( n ) ( x 0 ) n ! ( x − x 0 ) n = ∑ k = 0 n p n ( k ) ( x 0 ) k ! ( x − x 0 ) k \begin{aligned} p_n(x)&=\frac{p_n^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{p_n^{(n-1)}(x_0)}{(n-1)!}(x-x_0)^{n-1}+\cdots+p_n'(x_0)(x-x_0)+p(x_0)\\& =p(x_0)+p_n'(x_0)(x-x_0)+\cdots+\frac{p_n^{(n)}(x_0)}{n!}(x-x_0)^n\\&=\sum_{k=0}^n\frac{p_n^{(k)}(x_0)}{k!}(x-x_0)^k \end{aligned} pn(x)=n!pn(n)(x0)(xx0)n+(n1)!pn(n1)(x0)(xx0)n1++pn(x0)(xx0)+p(x0)=p(x0)+pn(x0)(xx0)++n!pn(n)(x0)(xx0)n=k=0nk!pn(k)(x0)(xx0)k  对于一般的函数 f f f,设其在点 x 0 x_0 x0 存在直到 n n n 阶的导数,构造 n n n 次多项式
T n ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n T_n(x)=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n Tn(x)=k=0nk!f(k)(x0)(xx0)k=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n容易验证
T n ( k ) ( x 0 ) = f ( k ) ( x 0 ) , k = 0 , 1 , 2 , ⋯   , n (*) T_n^{(k)}(x_0)=f^{(k)}(x_0),k=0,1,2,\cdots,n \tag{*} Tn(k)(x0)=f(k)(x0),k=0,1,2,,n(*)  下面证明:用 T n ( x ) \small T_n(x) Tn(x) 逼近 f ( x ) \small f(x) f(x) 时,其误差是 ( x − x 0 ) n \small (x-x_0)^n (xx0)n 的高阶无穷小量,即
f ( x ) − T n ( x ) = o ( ( x − x 0 ) n ) f(x)-T_n(x)=o\big((x-x_0)^n\big) f(x)Tn(x)=o((xx0)n)证明:
R n ( x ) = f ( x ) − T n ( x ) ,   Q n ( x ) = ( x − x 0 ) n R_n(x)=f(x)-T_n(x),\,Q_n(x)=(x-x_0)^n Rn(x)=f(x)Tn(x),Qn(x)=(xx0)n要证
lim ⁡ x → x 0 R n ( x ) Q n ( x ) = 0 \lim_{x\to x_0}\frac{R_n(x)}{Q_n(x)}=0 xx0limQn(x)Rn(x)=0由式 ( ∗ ) (*) () 可知,
R n ( x 0 ) = R n ′ ( x 0 ) = ⋯ = R n ( n ) ( x 0 ) = 0 R_n(x_0)=R_n'(x_0)=\cdots=R_n^{(n)}(x_0)=0 Rn(x0)=Rn(x0)==Rn(n)(x0)=0并易知
Q n ( x 0 ) = Q n ′ ( x 0 ) = ⋯ = Q n ( n − 1 ) ( x 0 ) = 0 ,   Q n ( n ) ( x 0 ) = n ! Q_n(x_0)=Q_n'(x_0)=\cdots=Q_n^{(n-1)}(x_0)=0,\,Q_n^{(n)}(x_0)=n! Qn(x0)=Qn(x0)==Qn(n1)(x0)=0,Qn(n)(x0)=n!使用 ( n − 1 ) (n-1) (n1) 次洛必达法则(至于为什么不是 n n n 次,留给读者思考),得
lim ⁡ x → x 0 R n ( x ) Q n ( x ) = lim ⁡ x → x 0 R n ′ ( x ) Q n ′ ( x ) = ⋯ = lim ⁡ x → x 0 R n ( n − 1 ) ( x ) Q n ( n − 1 ) ( x ) = lim ⁡ x → x 0 f ( n − 1 ) ( x ) − ( f ( n − 1 ) ( x 0 ) + f ( n ) ( x 0 ) ( x − x 0 ) ) n ( n − 1 ) ⋯ 2 ( x − x 0 ) = 1 n ! lim ⁡ x → x 0 [ f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 − f ( n ) ( x 0 ) ] = 0 (根据导数定义) \begin{aligned} \lim_{x\to x_0}\frac{R_n(x)}{Q_n(x)}&=\lim_{x\to x_0}\frac{R_n'(x)}{Q_n'(x)}=\cdots=\lim_{x\to x_0}\frac{R_n^{(n-1)}(x)}{Q_n^{(n-1)}(x)}\\&=\lim_{x\to x_0}\frac{f^{(n-1)}(x)-(f^{(n-1)}(x_0)+f^{(n)}(x_0)(x-x_0))}{n(n-1)\cdots2(x-x_0)}\\& =\frac{1}{n!}\lim_{x\to x_0}\Big[\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}-f^{(n)}(x_0)\Big]\\&=0\quad \textbf{(根据导数定义)} \end{aligned} xx0limQn(x)Rn(x)=xx0limQn(x)Rn(x)==xx0limQn(n1)(x)Rn(n1)(x)=xx0limn(n1)2(xx0)f(n1)(x)(f(n1)(x0)+f(n)(x0)(xx0))=n!1xx0lim[xx0f(n1)(x)f(n1)(x0)f(n)(x0)]=0(根据导数定义)所以
f ( x ) − T n ( x ) = o ( ( x − x 0 ) n ) f(x)-T_n(x)=o\big((x-x_0)^n\big) f(x)Tn(x)=o((xx0)n) f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o\big((x-x_0)^n\big) f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+o((xx0)n)  上式也被称为 带有 Peano \textrm{Peano} Peano 型余项 的泰勒公式. 美中不足的是,只给出了余项的定性估计. 现在呢,我们想构造一个定量形式的余项,以便对误差进行具体计算或估计.

  作辅助函数
F ( t ) = f ( x ) − [ f ( t ) + f ′ ( t ) ( x − t ) + f ′ ′ ( t ) 2 ! ( x − t ) 2 + ⋯ + f ( n ) ( t ) n ! ( x − t ) n ] F(t)=f(x)-[f(t)+f'(t)(x-t)+\frac{f''(t)}{2!}(x-t)^2+\cdots+\frac{f^{(n)}(t)}{n!}(x-t)^n] F(t)=f(x)[f(t)+f(t)(xt)+2!f′′(t)(xt)2++n!f(n)(t)(xt)n] G ( t ) = ( x − t ) n + 1 G(t)=(x-t)^{n+1} G(t)=(xt)n+1不妨设 x 0 < x x_0<x x0<x,则 F ( t ) \small F(t) F(t) G ( t ) \small G(t) G(t) [ x 0 , x ] [x_0,x] [x0,x] 上连续,在 ( x 0 , x ) (x_0,x) (x0,x) 上可导,且
F ′ ( t ) = − [ f ′ ( t ) + ( f ′ ′ ( t ) ( x − t ) − f ′ ( t ) ) + ( f ′ ′ ′ ( t ) 2 ! ( x − t ) 2 − f ′ ′ ( t ) ( x − t ) ) + ⋯ + ( f ( n + 1 ) ( t ) n ! ( x − t ) n − f ( n ) ( t ) ( n − 1 ) ! ( x − t ) n − 1 ) ] = ( − 1 ) [ f ′ ( t ) + ∑ k = 1 n ( f ( k + 1 ) ( t ) k ! ( x − t ) k − f ( k ) ( t ) ( k − 1 ) ! ( x − t ) k − 1 ) ] = ( − 1 ) [ ∑ k = 0 n f ( k + 1 ) ( t ) k ! ( x − t ) k − ∑ k = 0 n − 1 f ( k + 1 ) ( t ) k ! ( x − t ) k ] = − f ( n + 1 ) ( t ) n ! ( x − t ) n \begin{aligned} F'(t)=&-\Big[f'(t)+\Big(f''(t)(x-t)-f'(t)\Big)+\Big(\frac{f'''(t)}{2!}(x-t)^2-f''(t)(x-t)\Big)+\cdots\\&+\Big(\frac{f^{(n+1)}(t)}{n!}(x-t)^n-\frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}\Big)\Big]\\ =&(-1)\Big[f'(t)+\sum_{k=1}^n\Big(\frac{f^{(k+1)}(t)}{k!}(x-t)^k-\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1}\Big)\Big]\\=&(-1)\Big[\sum_{k=0}^n\frac{f^{(k+1)}(t)}{k!}(x-t)^k-\sum_{k=0}^{n-1}\frac{f^{(k+1)}(t)}{k!}(x-t)^{k}\Big]\\=&-\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}\\ \end{aligned} F(t)====[f(t)+(f′′(t)(xt)f(t))+(2!f′′′(t)(xt)2f′′(t)(xt))++(n!f(n+1)(t)(xt)n(n1)!f(n)(t)(xt)n1)](1)[f(t)+k=1n(k!f(k+1)(t)(xt)k(k1)!f(k)(t)(xt)k1)](1)[k=0nk!f(k+1)(t)(xt)kk=0n1k!f(k+1)(t)(xt)k]n!f(n+1)(t)(xt)n G ′ ( t ) = − ( n + 1 ) ( x − t ) n G'(t)=-(n+1)(x-t)^n G(t)=(n+1)(xt)n因为 F ( x ) = G ( x ) = 0 \small F(x)=G(x)=0 F(x)=G(x)=0,由柯西中值定理,得
F ( x 0 ) G ( x 0 ) = F ( x 0 ) − F ( x ) G ( x 0 ) − G ( x ) = F ′ ( ξ ) G ′ ( ξ ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! \frac{F(x_0)}{G(x_0)}=\frac{F(x_0)-F(x)}{G(x_0)-G(x)}=\frac{F'(\xi)}{G'(\xi)}=\frac{f^{(n+1)}(\xi)}{(n+1)!} G(x0)F(x0)=G(x0)G(x)F(x0)F(x)=G(ξ)F(ξ)=(n+1)!f(n+1)(ξ)其中 ξ ∈ ( x 0 , x ) \xi\in(x_0,x) ξ(x0,x),则
F ( x 0 ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! G ( x 0 ) F(x_0)=\frac{f^{(n+1)}(\xi)}{(n+1)!}G(x_0) F(x0)=(n+1)!f(n+1)(ξ)G(x0) F , G \small F,G F,G 表达式代入,得
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x)=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1所以
R n ( x ) = f ( x ) − T n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=f(x)-T_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=f(x)Tn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1称为 Lagrange \textrm{Lagrange} Lagrange 型余项,当 n = 0 n=0 n=0 时,
f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) f(x)-f(x_0)=f'(\xi)(x-x_0) f(x)f(x0)=f(ξ)(xx0) Lagrange \textrm{Lagrange} Lagrange 中值公式.

  借用算法分析中的记号,余项 R n ( x ) R_n(x) Rn(x) 还可以表示为以下两种形式.
O ( ( x − x 0 ) n + 1 ) Θ ( ( x − x 0 ) n + 1 ) O\big((x-x_0)^{n+1}\big)\quad\Theta\big((x-x_0)^{n+1}\big) O((xx0)n+1)Θ((xx0)n+1)不过最为准确的表述还是 Lagrange \textrm{Lagrange} Lagrange 型余项. 余项还有两种表示形式,分别是 积分型余项 和 柯西余项,在此不作介绍,感兴趣的读者可以自己了解下.

二、从一元到多元

  至于多元函数的泰勒展开,下以二元函数 f ( x , y ) \small f(x,y) f(x,y) 为例,进行说明,想在点 ( x 0 , y 0 ) \small (x_0,y_0) (x0,y0) 的某一邻域内进行泰勒展开. 设邻域内任意一点 ( x 0 + h , y 0 + k ) \small (x_0+h,y_0+k) (x0+h,y0+k),先作辅助函数
ϕ ( t ) = f ( x 0 + t h , y 0 + t k ) \phi(t)=f(x_0+th,y_0+tk) ϕ(t)=f(x0+th,y0+tk)
ϕ ( 0 ) = f ( x 0 , y 0 ) ,   ϕ ( 1 ) = f ( x 0 + h , y 0 + k ) \phi(0)=f(x_0,y_0),\,\phi(1)=f(x_0+h,y_0+k) ϕ(0)=f(x0,y0),ϕ(1)=f(x0+h,y0+k)先考虑 ϕ ( t ) \phi(t) ϕ(t) n n n 阶导函数
ϕ ′ ( t ) = f x ( x 0 + t h , y 0 + t k ) h + f y ( x 0 + t h , y 0 + t k ) k ϕ ′ ′ ( t ) = f x x ( x 0 + t h , y 0 + t k ) h 2 + f x y ( x 0 + t h , y 0 + t k ) h k + f y x ( x 0 + t h , y 0 + t k ) k h + f y y ( x 0 + t h , y 0 + t k ) k 2 = ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 + t h , y 0 + t k ) \begin{aligned} \phi'(t)=&f_x(x_0+th,y_0+tk)h+f_y(x_0+th,y_0+tk)k\\ \phi''(t)=&f_{xx}(x_0+th,y_0+tk)h^2+f_{xy}(x_0+th,y_0+tk)hk+\\&f_{yx}(x_0+th,y_0+tk)kh+f_{yy}(x_0+th,y_0+tk)k^2\\=& (h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^2f(x_0+th,y_0+tk) \end{aligned} ϕ(t)=ϕ′′(t)==fx(x0+th,y0+tk)h+fy(x0+th,y0+tk)kfxx(x0+th,y0+tk)h2+fxy(x0+th,y0+tk)hk+fyx(x0+th,y0+tk)kh+fyy(x0+th,y0+tk)k2(hx+ky)2f(x0+th,y0+tk)依次类推,或用数学归纳法,可以得到以下结论
ϕ ( n ) ( t ) = ∑ p = 0 n C n p h p k n − p ∂ n f ∂ x p ∂ y n − p ∣ ( x 0 + t h , y 0 + t k ) = ( h ∂ ∂ x + k ∂ ∂ y ) n f ( x 0 + t h , y 0 + t k ) \begin{aligned} \phi^{(n)}(t)=\sum_{p=0}^nC_n^ph^pk^{n-p}\frac{\partial^{n}f}{\partial x^p\partial y^{n-p}}\Big|_{(x_0+th,y_0+tk)}=(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n}f(x_0+th,y_0+tk) \end{aligned} ϕ(n)(t)=p=0nCnphpknpxpynpnf (x0+th,y0+tk)=(hx+ky)nf(x0+th,y0+tk)由一元函数的泰勒展式,将 ϕ ( t ) \phi(t) ϕ(t) 在点 0 0 0 处泰勒展开
f ( x 0 + h , y 0 + k ) = ϕ ( 1 ) = ϕ ( 0 ) + ϕ ′ ( 0 ) + ⋯ + ϕ ( n ) ( 0 ) n ! + ϕ ( n + 1 ) ( θ ) ( n + 1 ) ! = f ( x 0 , y 0 ) + ∑ p = 1 n 1 p ! ( h ∂ ∂ x + k ∂ ∂ y ) p f ( x 0 , y 0 ) + 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k ) = f ( x 0 , y 0 ) + ∑ p = 1 n 1 p ! ( h ∂ ∂ x + k ∂ ∂ y ) p f ( x 0 , y 0 ) + Θ ( ρ n + 1 ) = f ( x 0 , y 0 ) + ∑ p = 1 n 1 p ! ( h ∂ ∂ x + k ∂ ∂ y ) p f ( x 0 , y 0 ) + O ( ρ n + 1 ) = f ( x 0 , y 0 ) + ∑ p = 1 n 1 p ! ( h ∂ ∂ x + k ∂ ∂ y ) p f ( x 0 , y 0 ) + o ( ρ n ) \begin{aligned} f(x_0+h,y_0+k)=&\phi(1)=\phi(0)+\phi'(0)+\cdots+\frac{\phi^{(n)}(0)}{n!}+\frac{\phi^{(n+1)}(\theta)}{(n+1)!}\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)\\&+\frac{1}{(n+1)!}{(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1}}f(x_0+\theta h,y_0+\theta k)\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)+\Theta(\rho^{n+1})\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)+O(\rho^{n+1})\\ =&f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^pf(x_0,y_0)+o(\rho^{n}) \end{aligned} f(x0+h,y0+k)=====ϕ(1)=ϕ(0)+ϕ(0)++n!ϕ(n)(0)+(n+1)!ϕ(n+1)(θ)f(x0,y0)+p=1np!1(hx+ky)pf(x0,y0)+(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)f(x0,y0)+p=1np!1(hx+ky)pf(x0,y0)+Θ(ρn+1)f(x0,y0)+p=1np!1(hx+ky)pf(x0,y0)+O(ρn+1)f(x0,y0)+p=1np!1(hx+ky)pf(x0,y0)+o(ρn)其中 ρ = h 2 + k 2 \rho=\sqrt{h^2+k^2} ρ=h2+k2 .

  对于 n n n 元函数的泰勒展开,可利用相同的思想进行推导,在此就不赘述了.

  学数学嘛,重要的是学其中的思想——"道"也,而非“术”也.



揭秘:不使用 n n n 次洛必达法则原因:

  因为 f ( n ) ( x 0 ) \small f^{(n)}(x_0) f(n)(x0) 存在,所以在 x 0 x_0 x0 的邻域 U ( x 0 ) \small U(x_0) U(x0) f f f 存在 n − 1 n-1 n1 阶导函数 f ( n − 1 ) ( x ) \small f^{(n-1)}(x) f(n1)(x),但不一定存在 n n n 阶导函数(肯定会有人这样问,要是存在了怎么办?那就多展开一项啊,hhh),所以只能使用 ( n − 1 ) (n-1) (n1) 次洛必达法则.

三、拓展升华

  对一元函数,我们得到了以下结论:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + ⋯ = f ( x 0 ) + f ′ ( x 0 ) Δ x + ⋯ + f ( n ) ( x 0 ) n ! ( Δ x ) n + ⋯ \begin{aligned} f(x)&=f(x_0)+f'(x_0)(x-x_0)+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\cdots\\&= f(x_0)+f'(x_0)\Delta x+\cdots+\frac{f^{(n)}(x_0)}{n!}(\Delta x)^n+\cdots \end{aligned} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+=f(x0)+f(x0)Δx++n!f(n)(x0)(Δx)n+

特别地,对于指数函数 e x e^x ex,有
exp ⁡ ( x ) = 1 + x + x 2 2 ! + ⋯ + x n n ! + ⋯ \exp(x)=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\cdots exp(x)=1+x+2!x2++n!xn+

  对二元函数,我们有
f ( x 0 + Δ x , y 0 + Δ y ) = f ( x 0 , y 0 ) + ∑ p = 1 n 1 p ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) p f ( x 0 , y 0 ) + ⋯ f(x_0+\Delta x,y_0+\Delta y)=f(x_0,y_0)+\sum_{p=1}^n\frac{1}{p!}(\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial y})^pf(x_0,y_0)+\cdots f(x0+Δx,y0+Δy)=f(x0,y0)+p=1np!1(Δxx+Δyy)pf(x0,y0)+
下面对这两种形式进行泛化,引入恒等算子 I I I,定义如下
I f = f If=f If=f

引入求导算子 D D D,定义如下
D f = d f d x Df=\frac{df}{dx} Df=dxdf


f ( x ) = f ( x 0 ) + f ′ ( x 0 ) Δ x + ⋯ + f ( n ) ( x 0 ) n ! ( Δ x ) n + ⋯ = ( f + Δ x f ′ + ⋯ + ( Δ x ) n f ( n ) n ! + ⋯   ) ∣ x = x 0 = ( ( I + Δ x D + ⋯ + ( Δ x D ) n n ! + ⋯   ) f ) ∣ x = x 0 = ( exp ⁡ ( Δ x D ) f ) ∣ x = x 0 \begin{aligned} f(x)&=f(x_0)+f'(x_0)\Delta x+\cdots+\frac{f^{(n)}(x_0)}{n!}(\Delta x)^n+\cdots\\&= (f+\Delta xf'+\cdots+(\Delta x)^n\frac{f^{(n)}}{n!}+\cdots)\Big|_{x=x_0}\\&= \big((I+\Delta xD+\cdots+\frac{(\Delta xD)^n}{n!}+\cdots)f\big)\Big|_{x=x_0}\\&=\big(\exp(\Delta xD)f\big)\Big|_{x=x_0} \end{aligned} f(x)=f(x0)+f(x0)Δx++n!f(n)(x0)(Δx)n+=(f+Δxf++(Δx)nn!f(n)+) x=x0=((I+ΔxD++n!(ΔxD)n+)f) x=x0=(exp(ΔxD)f) x=x0

  同理,对二元函数,有
f ( x , y ) = ( exp ⁡ ( Δ x D x + Δ y D y ) f ) ∣ ( x , y ) = ( x 0 , y 0 ) f(x,y)=\big(\exp(\Delta xD_x+\Delta yD_y)f\big)\Big|_{(x,y)=(x_0,y_0)} f(x,y)=(exp(ΔxDx+ΔyDy)f) (x,y)=(x0,y0)

其中 D x f = ∂ f ∂ x , D y f = ∂ f ∂ y \displaystyle D_xf=\frac{\partial f}{\partial x}, D_yf=\frac{\partial f}{\partial y} Dxf=xf,Dyf=yf.

  对 n n n 元函数,有
f ( x 1 , x 2 , ⋯   , x n ) = exp ⁡ ( Δ x 1 D x 1 + Δ x 2 D x 2 + ⋯ + Δ x n D x n ) f ( x 10 , x 20 , ⋯   , x n 0 ) f(x_1,x_2,\cdots,x_n)=\exp(\Delta x_1D_{x_1}+\Delta x_2D_{x_2}+\cdots+\Delta x_nD_{x_n})f(x_{10},x_{20},\cdots,x_{n0}) f(x1,x2,,xn)=exp(Δx1Dx1+Δx2Dx2++ΔxnDxn)f(x10,x20,,xn0)

其中
D x i f = ∂ f ∂ x i , i = 1 , 2 , ⋯   , n D_{x_i}f=\frac{\partial f}{\partial x_i},i=1,2,\cdots,n Dxif=xif,i=1,2,,n

x = ( x 1 , x 2 , ⋯   , x n ) T , x 0 = ( x 10 , x 20 , ⋯   , x n 0 ) T , x=(x_1,x_2,\cdots,x_n)^T,x_0=(x_{10},x_{20},\cdots,x_{n0})^T, x=(x1,x2,,xn)T,x0=(x10,x20,,xn0)T,

Δ x = x − x 0 = ( Δ x 1 , Δ x 2 , ⋯   , Δ x n ) T , ∇ = ( D x 1 , D x 2 , ⋯   , D x n ) T , \Delta x=x-x_0=(\Delta x_1,\Delta x_2,\cdots,\Delta x_n)^T,\nabla=(D_{x_1},D_{x_2},\cdots,D_{x_n})^T, Δx=xx0=(Δx1,Δx2,,Δxn)T,=(Dx1,Dx2,,Dxn)T,


Δ x 1 D x 1 + Δ x 2 D x 2 + ⋯ + Δ x n D x n = ( Δ x ) T ∇ \Delta x_1D_{x_1}+\Delta x_2D_{x_2}+\cdots+\Delta x_nD_{x_n}=(\Delta x)^T\nabla Δx1Dx1+Δx2Dx2++ΔxnDxn=(Δx)T
f ( x ) = ( exp ⁡ ( ( Δ x ) T ∇ ) f ) ∣ x = x 0 f(x)=\Big(\exp\big((\Delta x)^T\nabla\big)f\Big)\Big|_{x=x_0} f(x)=(exp((Δx)T)f) x=x0



参考文献:
1.华东师范大学数学系.数学分析(上下册)
[M].第四版.北京:高等教育出版社,2010.
2.戴嘉尊.微分方程数值解法[M].第二版.南京:东南大学出版社,2012.

三角函数泰勒展是基于微积分中的泰勒定理得到的一系列无穷级数表示。以正弦和余弦为例,这两个函数可以在$x=0$处(也称为麦克劳林级数)进行泰勒展开。 对于一个足够光滑的函数$f(x)$,它在$a$附近的泰勒展为: $$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + ... +\frac{f^{(n)}(a)}{n!}(x-a)^n+...$$ 当选择$a=0$时,则有: - 对于$\sin x$: $$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ... (-1)^k\frac{x^{2k+1}}{(2k+1)!} + ...$$ 这里每一项都是前一项对$x$求导的结果除以相应的阶乘。 - 对于$\cos x$: $$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + ... (-1)^k\frac{x^{2k}}{(2k)!} + ...$$ 同样地,每一项也是由前一项对$x$求导得来,并且注意到$\cos' x=-\sin x$, $\sin' x=\cos x$这样的性质用于推导过程中。 为了从数学原理解释这个过程,需要考虑几个关键概念: - 导数:代表了函数的变化率。 - 阶乘:出现在分母位置,来源于$n$次导数后的系数调整。 - 幂级数收敛性:确保无限多项相加之后仍然有意义并且等于原来的函数。 要完整展示推导过程,通常会先确定给定点的所有阶导数值,然后把这些值代入上面给出的通用公中去。由于$\sin x$ 和 $\cos x$ 是周期性的,并且它们及其各阶导数在$x=0$处有着简单的取值模,这使得构造出这两者的泰勒级数成为可能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值