CaEGCN: Cross-Attention Fusion based Enhanced Graph Convolutional Network for Clustering 2021

问题:现有的深度聚类方法往往忽略了数据之间的关系。




本文提出了一种基于交叉注意的深度聚类框架——基于交叉注意融合的增强型图形卷积网络(CaEGCN) ,该网络包含四个主要模块: 交叉注意融合模块,创新性地将与个体数据相关的内容自编码模块(CAE)和与逐层数据之间关系相关的图形卷积自编码模块(GAE)连接起来;以及自监督模型,该模型突出了聚类任务的鉴别信息。交叉注意融合模块融合了两种异构表示,CAE 模块补充了 GAE 模块的内容信息,避免了 GCN 的过度平滑问题。在 GAE 模块中,提出了两种新的损失函数,分别重建数据的内容和数据之间的关系。最后,自监督模块约束 CAE 和 GAE 中间层表示的分布是一致的。

1)提出一种基于端到端交叉注意融合的深度聚类框架,其中交叉注意融合模块创造性地将图卷自动编码模块和内容自动编码模块分层连接;

2)提出了一种交叉注意融合模型,对融合后的异质表征进行注意权重分配;

3)在图卷积自动编码模块中,提出同时重构数据的内容和关系,有效地增强了 CaEGCN 的聚类性能;


CROSS-ATTENTION FUSION BASED ENHANCED GRAPH CONVOLUTIONAL NETWORK

整体框架如图:
在这里插入图片描述

由四个主要模块组成:用于提取内容信息的自编码器模块;基于GCN的自编码器模块,用于利用数据之间的关系;交叉注意模块,用于连接上述两个模块,其中多级自适应融合策略在传输过程中尽可能补充有效的内容信息;以及用于约束中间层表示分布一致性的自监督模块。

A. Constructing the Graph

构造原始数据X的图采用方法与SDCN一样,KNN方法。

B. Content Auto-encoder Module (CAE)

采用基础的全连接层,损失采用重构损失,重构X。

C. Cross-Attention Fusion Module
利用交叉注意力融合机制以多级自适应的方式将CAE学习到的内容信息和GAE学习到的数据关系进行集成。

将交叉注意融合机制定义为:
R = F a t t ( Q , K , V ) (1) R=F_{att}(Q,K,V) \tag{1} R=Fatt(Q,K,V)(1)
​ Q:query,K:key,V:value

交叉注意力融合模块的初始输入Y定义为:
Y = γ Z l + ( 1 − r ) H l (2) Y=\gamma Z_l + (1-r)H_l \tag{2} Y=γZl+(1r)Hl(2)
Z l , H l Z_l,H_l Zl,Hl分别为GAE与CAE第l层的输出。 γ \gamma γ是权衡参数,在本实验中设置为0.5。

注意力机制计算:首先计算融合query和融合key之间的相似度:
s a b = q a ∗ k b (3) s_{ab} = q_a * k_b \tag{3} sab=qakb(3)
然后在上述基础上进行softmax归一化获得 a a b a_{ab} aab
a a b = s o f t m a x ( s a b ) = e x p ( s a b ) ∑ a = 0 D a t t e x p ( s a b ) (4) a_{ab} = softmax(s_{ab}) = \frac{exp(s_{ab})}{\sum^{D_{att}}_{a=0}exp(s_{ab})}\tag{4} aab=softmax(sab)=a=0Dattexp(sab)exp(sab)(4)

交叉注意融合机制R最后获得的输出为:
r a = ∑ b = 0 N a a b v b (5) r_a = \sum^N_{b=0}a_{ab}v_b \tag{5} ra=b=0Naabvb(5)
为了进一步感知数据的不同方面,引入了多头机制:
R m = F a t t ( Q m , K m , V m ) , m = 1 , 2 , 3 , . . . , M . (6) R^m=F_{att}(Q_m,K_m,V_m) \tag{6},m=1,2,3,...,M. Rm=Fatt(Qm,Km,Vm),m=1,2,3,...,M.(6)
其中 Q m = W m q Q Q_m = W_m^qQ Qm=WmqQ,K,V同理。
R = W ⋅ C o n c a t ( R 1 , . . . , R M ) (7) R = W\cdot Concat(R_1,...,R_M)\tag{7} R=WConcat(R1,...,RM)(7)
其中Concat(·)表示矩阵串联操作。这就是所谓的多头机制和交叉注意融合模块。

D. Graph Convolutional Auto-Encoder Module (GAE)

将前面的交叉注意力融合模块得到的输出表示R作为GAE的输入,进行谱图卷积。
Z l = G A E ( R l − 1 , A ) = a l ( D ^ − 1 / 2 A ^ D ^ − 1 / 2 R l − 1 U L ) (8) Z_l = GAE(R_{l-1},A)=a_l(\hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}R_{l-1}U_L )\tag{8} Zl=GAE(Rl1,A)=al(D^1/2A^D^1/2Rl1UL)(8)
损失函数重构 A ~ = S i g m o d i ( Z L T Z L ) \tilde{A} = Sigmodi(Z_L^TZ_L) A~=Sigmodi(ZLTZL) X ~ = Z L \tilde{X}=Z_L X~=ZL

E. Self-Supervised Module

前面的学习很难判断是否为聚类的最优表示,需要给出一个聚类的优化目标。

这里和诸如SDCN等前面众多方法一样采用Student’s t-distribution作为真实标签,其二次归一化作为目标标签。对CAE和GAE同时做优化。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
dea-net是一种基于细节增强卷积和对比度的单幅图像去雾算法。它的主要目标是提高图像的可视质量,减少雾霾对图像造成的影响。 dea-net算法使用了细节增强卷积和对比度两种技术来去除雾霾,以提高图像的细节信息和对比度。细节增强卷积是通过对图像进行一系列卷积操作,突出图像中的细节信息,从而提高图像的清晰度和细节表现力。而对比度提升则是通过调整图像的亮度和对比度,增强图像的视觉效果。 dea-net算法在去除雾霾的过程中,首先通过细节增强卷积提取图像的细节信息,然后利用对比度提升技术增强图像的对比度。接下来,通过对像素值进行归一化处理来消除雾霾的像素值的弱化效应。最后,再利用细节增强卷积增强图像的细节信息,提高图像的清晰度。 实验结果表明,dea-net算法在单幅图像去雾方面取得了较好的效果。与其他算法相比,在恢复图像的细节和对比度方面具有明显的优势。该算法能够有效地去除雾霾并恢复图像的清晰度和细节,提高图像的可视质量。 总结而言,dea-net是一种基于细节增强卷积和对比度的单幅图像去雾算法,通过提取细节信息和增强对比度的方式,有效地去除雾霾,提高图像的清晰度和细节表现力。该算法在图像去雾方面具有较好的效果,对于提升图像的可视质量具有重要的应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值