本文的backbone使用U-Net,虽然作者没怎么强调这一点,backbone部分是把VIS和IRconcat到一起提取特征,VIS和IR还分别使用VGG提取了独特的特征,并从第二层开始使用作者提出的MAM(注意力融合块)融合三部分特征,然后再送入同一层的decoder部分。得到一个融合图像,为了同时保留两种模态的典型特征并避免在融合结果中出现伪影,我们在损失函数中开发了一种耦合对比约束。
首先使用自适应权重可学习的损失函数训练网络,然后再添加对比损失进行微调。
作者的数据集格式是.h5,是作者自己预处理的,本文把图像分解为前景和背景的掩码M是预处理好保存在.h5文件里的。
#代码公开
#对比学习
#通用融合框架
1、摘要
现有的基于学习的融合方法尝试构建各种损失函数以保留互补特征,但忽略了发现两种模态之间的相互关系,导致融合结果中出现冗余甚至无效的信息。此外,大多数方法侧重于通过增加网络的深度来加强网络,而忽视了特征传递的重要性,导致重要信息的退化。为了解决这些问题,我们提出了一种耦合对比学习网络,称为CoCoNet,以端到端的方式实现红外和可见光图像融合。具体来说,为了同时保留两种模态的典型特征并避免在融合结果中出现伪影,我们在损失函数中开发了一种耦合对比约束。在融合图像中,其前景目标/背景细节部分在表示空间中被拉近到红外/可见源并远离可见/红外源。我们进一步利用图像特征提供数据敏感权重(这一块应该指的是自适应的权重),使我们的损失函数能够与源图像建立更可靠的关系。