高斯混合模型(GMM Gaussian Mixture Model)

高斯混合模型是一种业界广泛使用的聚类算法,该方法使用了高斯分布作为参数模型,并使用了期望最大算法(EM)进行训练。
摘要由CSDN通过智能技术生成

高斯混合模型是一种业界广泛使用的聚类算法,该方法使用了高斯分布作为参数模型,并使用了期望最大算法(EM)进行训练

什么是高斯分布

高斯分布有时也被称作正态分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面都有着重大的影响。

若随机变量X服从一个数学期望为 μ μ μ、标准方差为 σ 2 σ^2 σ2的高斯分布,记作:
X   N ( μ , σ 2 ) X~N(μ,σ^2) X N(μ,σ2)
则其概率密度函数为:
在这里插入图片描述
在这里插入图片描述
公式中含有2个参数,参数 μ μ μ表示均值,参数 σ σ σ表示标准差,均值决定了其位置,标准差决定了分布的幅度。

有了概率密度函数,在已知参数 μ , σ μ,σ μσ的前提下,输入变量x,可以获得其相对应的概率密度。

高斯混合模型

定义:高斯混合模型是指具有如下形式的概率分布模型:
P ( y ∣ θ ) = ∑ k = 1 K α k φ ( y ∣ θ k ) P(y|θ)=\displaystyle\sum_{k=1}^{K}α_kφ(y|θ_k) P(yθ)=k=1Kαkφ(yθk) (1)

其中, α k α_k αk是系数,且 α k ≥ 0 , ∑ k = 1 K α k = 1 α_k≥0,\displaystyle\sum_{k=1}^{K}α_k=1 αk0k=1Kαk=1; φ ( y ∣ θ k ) φ(y|θ_k) φ(yθk)是高斯分布密度函数,其中 θ k = ( μ k , σ k ) θ_k=(μ_k,σ_k) θk=(μkσk)

φ ( y ∣ θ k ) = 1 2 π σ k e x p ( − ( y − μ k ) 2 2 σ k 2 ) φ(y|θ_k)=\frac{1}{\sqrt{2π}σ_k}exp(-\frac{(y-μ_k)^2}{2σ_k^{2}}) φ(yθk)=2π σk1exp(2σk2(yμk)2) (2)

称为第k个分模型。
一般混合模型可以由任意概率分布密度函数代替2中的高斯密度函数,现在只介绍最常用的高斯混合模型。

高斯混合模型参数估计的EM算法

假设观测数据 y 1 , y 2 … … y N y_1,y_2……y_N y1,y2yN由高斯混合模型生成,
P ( y ∣ θ ) = ∑ k = 1 K α k φ ( y ∣ θ k ) P(y|θ)=\displaystyle\sum_{k=1}^{K}α_kφ(y|θ_k) P(yθ)=k=1Kαkφ(yθk)

其中 θ = ( α 1 , α 2 … α K ; θ 1 , θ 2 … θ K ) θ=(α_1,α_2…α_K;θ_1,θ_2…θ_K) θ=(α1,α2αKθ1,θ2θK),我们用EM算法估计高斯混合模型的参数 θ θ θ

1明确隐变量,写出完全数据的对数似然函数

可以设想观测数据 y j y_j yj,j=1,2……N,是这样产生的:
1)首先依概率 α k α_k αk选择第k个高斯分布分模型 φ ( y

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 高斯混合模型GMM)是一种概率模型,常用于数据聚类和分布建模。路径规划是指在给定环境地图和起点终点信息的情况下,确定机器人或车辆的移动路径。将GMM应用于路径规划仿真可以更好地模拟实际环境中的不确定性和动态变化。 首先,通过使用GMM来对环境进行建模,可以从地图数据中提取出环境的特征,并将其表示为一组高斯分布。每个高斯分布代表一个可能的障碍物或特征。这样建模可以更真实地反映环境中的障碍物分布和变化情况。 其次,在路径规划的过程中,机器人或车辆需要避免障碍物,并找到一条安全的路径。传统的路径规划算法可能会困难地处理环境的不确定性和障碍物的动态变化。而使用GMM可以根据环境中高斯分布的权重和方差信息,预测出障碍物的可能位置和运动趋势。 最后,在仿真中,可以将预测到的障碍物信息与机器人或车辆的当前位置、速度等信息结合起来,使用优化算法,例如贪婪算法或遗传算法,来生成最佳路径。通过不断迭代和优化,机器人或车辆可以在环境中找到一条安全且高效的路径。 总的来说,将GMM应用于路径规划仿真可以更好地考虑环境的不确定性和动态变化,从而使得路径规划更加真实和可靠。这种方法可以广泛应用于无人车、自动驾驶、智能机器人等领域,对于提高智能化交通和智能化运输的效率和安全性具有重要意义。 ### 回答2: 高斯混合模型Gaussian Mixture ModelGMM)是一种统计模型,用于描述多个高斯分布叠加而成的数据分布。在路径规划仿真中,利用GMM进行路径规划可以帮助我们找到最优的路径。 首先,我们将路径规划的问题建模为一个优化问题,目标是找到一条最优路径来满足特定的条件。通过采集实际环境中的数据,我们可以得到一组样本点,这些样本点可以表示不同位置的特征信息。 然后,我们使用GMM对这些样本点进行建模。GMM假设这些样本点是由多个高斯分布混合而成的,每个高斯分布表示一个可能的路径。通过对样本点进行聚类,我们可以获得每个高斯分布的均值和协方差矩阵。 接下来,我们可以使用路径搜索算法,比如A*算法,来搜索最优路径。在每一步中,我们会计算当前位置到各个高斯分布均值点的距离,并基于距离和高斯分布的权重进行路径更新。这样,我们就可以逐步找到一条最优路径。 最后,我们通过仿真来验证我们的路径规划算法。在仿真环境中,我们可以根据实际情况设定起点和终点,并观察GMM路径规划算法是否能够找到一条最优路径。仿真结果将有助于评估算法的效果,并对算法进行改进和优化。 总之,利用GMM进行路径规划仿真可以帮助我们找到最优的路径。通过建模样本点、使用GMM聚类、路径搜索和仿真验证,我们可以得到一条适应实际环境的最优路径。这样的路径规划算法可以应用于自动驾驶、机器人导航等领域,提高路径规划的准确性与效率。 ### 回答3: 高斯混合模型Gaussian Mixture ModelGMM)是一种常用的概率模型,能够将一个复杂的分布模型表示为多个简单的高斯分布的线性叠加。GMM在路径规划中的应用是通过对环境的建模,对机器人的最佳路径进行规划。 首先,使用传感器获取环境的感知信息,例如激光雷达、摄像头等。然后,将这些感知信息输入到GMM中进行建模。GMM可以将每个高斯分布看作是环境中的一个障碍物或者目标点,通过高斯分布的均值来表示障碍物或者目标点的位置,通过方差来表示不确定性。在路径规划中,可以将机器人的起点和终点分别设定为高斯分布的均值,并选取方差较小的高斯分布表示机器人的期望路径。 接下来,使用GMM进行路径规划的仿真。通过对GMM模型进行采样,得到一系列的路径样本。对每个路径样本进行评估,计算其通过环境的概率。在评估阶段,可以应用机器学习算法(例如最大似然估计)来学习GMM中的参数,从而使路径样本的评估更加准确。 最后,根据路径样本的评估结果,选择通过概率最高的路径作为机器人的最佳路径。在实际应用中,路径规划算法还需要考虑机器人的动力学约束、环境的不确定性以及实时性等因素。 总之,高斯混合模型在路径规划中的仿真可以通过建模环境、对路径样本进行评估和选择最佳路径三个步骤来实现。这种方法能够有效地处理环境中的不确定性,并生成符合机器人能力和环境要求的最佳路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值