高斯混合模型(Gaussian Mixture Model,简称GMM)

高斯混合模型(Gaussian Mixture Model,简称GMM)是一种概率模型,用于表示由多个高斯分布(正态分布)组成的复杂分布。

谱学习算法(Spectral Learning Algorithms)是一类利用线性代数中的矩阵分解技术来估计模型参数的方法,在自然语言处理、机器学习等领域有广泛的应用。

高斯混合模型(GMM)

目标公式:

给定一组观测数据 { x i } \{x_i\} {xi},GMM 可以用以下混合密度函数来描述:

p ( x ∣ θ ) = ∑ k = 1 K π k N ( x ∣ μ k , Σ k ) p(x|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k,\Sigma_k) p(xθ)=k=1KπkN(xμk,Σk)

其中,

  • x x x 是一个观测样本。
  • K K K混合成分的数量。
  • π k \pi_k πk 是第 k k k 个高斯分布的权重,满足 ∑ k = 1 K π k = 1 \sum_{k=1}^{K} \pi_k = 1 k=1Kπk=1
  • N ( x ∣ μ k , Σ k ) \mathcal{N}(x|\mu_k,\Sigma_k) N(xμk,Σk) 表示均值 μ k \mu_k μk协方差矩阵 Σ k \Sigma_k Σk 的第 k k k 个高斯分布的概率密度函数。
涉及到的公式及其作用:
  1. 高斯分布的概率密度函数
    N ( x ∣ μ k , Σ k ) = 1 ( 2 π ) D / 2 ∣ Σ k ∣ 1 / 2 exp ⁡ ( − 1 2 ( x − μ k ) T Σ k − 1 ( x − μ k ) ) \mathcal{N}(x|\mu_k,\Sigma_k) = \frac{1}{(2\pi)^{D/2}|\Sigma_k|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_k)^T\Sigma_k^{-1}(x-\mu_k)\right) N(xμk,Σk)=(2π)D/2Σk1/21exp(21(xμk)TΣk1(xμk))

    • D D D数据的维度。
    • ∣ Σ k ∣ |\Sigma_k| Σk协方差矩阵的行列式。
    • Σ k − 1 \Sigma_k^{-1} Σk1协方差矩阵的逆矩阵。
    • ( x − μ k ) T (x-\mu_k)^T (xμk)T 是向量 x − μ k x-\mu_k xμk转置。

谱学习算法

谱学习算法通常利用矩阵或张量的特征结构来估计模型参数。

对于 GMM,谱方法可以避免期望最大化(EM)算法的局部最优问题,提供一种全局最优的解法。

谱学习算法的步骤:
  1. 构造低阶矩矩阵:通常使用样本的低阶统计信息(如一阶、二阶矩)来构造矩阵。

M = E [ x x T ] M = E[x x^T] M=E[xxT]

这里 M M M 是样本的二阶矩矩阵, E [ ⋅ ] E[\cdot] E[] 表示期望操作。

  1. 特征值分解:对矩阵 M M M 进行特征值分解,得到特征向量和特征值。

M = U Λ U T M = U \Lambda U^T M=UΛUT

  • U U U特征向量矩阵。
  • Λ \Lambda Λ 是对角线上包含特征值的矩阵。
  1. 估计 GMM 参数:从特征向量和特征值中估计出高斯混合模型的参数 μ k \mu_k μk Σ k \Sigma_k Σk π k \pi_k πk

由于谱学习算法的具体实现细节可能会因不同的场景而有所变化,所以具体的参数估计过程会有所不同。

但大体上,谱学习算法会利用矩阵的特征值和特征向量与 GMM 参数之间的关系来进行估计。

  • 30
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值