如何证明pi是无理数
无理数与有理数
无理数,也叫无限不循环小数,指的是它的小数形式无论到小数点后几位,都不会出现数字循环。
如果小数点后出现了循环,那么它就不是无理数,而是有理数。
有理数可以写成两个整数相除的形式。
下面证明任意一个有理数都可以写成两个整数相除的形式。
对于任意一个小数
a
a
a,都可以写成:
a
=
C
+
D
a=C+D
a=C+D
的形式,其中
C
C
C为整数部分
c
1
c
2
.
.
.
c
r
c_1c_2...c_r
c1c2...cr,
D
D
D为小数部分,假设
a
a
a从小数点
m
m
m位后开始出现循环数字,并每隔
n
n
n位重复一次,即:
D
=
0.
a
1
a
2
.
.
.
a
m
b
˙
1
b
˙
2
.
.
.
b
˙
n
⏟
n
位循环
D=0.a_1a_2...a_m\underbrace{\dot b{_1}\dot b_2...\dot b_n}_{\rm n 位循环}
D=0.a1a2...amn位循环
b˙1b˙2...b˙n
将
a
a
a的小数部分扩大
1
0
m
10^m
10m倍,得到新的小数
E
E
E,有
E
=
D
∗
1
0
m
=
G
+
H
E=D*10^m=G+H
E=D∗10m=G+H
小数
E
E
E的整数部分
G
G
G为
a
1
a
2
.
.
.
a
m
a_1a_2...a_m
a1a2...am,小数部分
H
H
H为
H
=
0.
b
˙
1
b
˙
2
.
.
.
b
˙
n
⏟
n
位循环
=
0.
b
1
b
2
.
.
.
b
n
b
˙
1
b
˙
2
.
.
.
b
˙
n
⏟
n
位循环
H=0.\underbrace{\dot b{_1}\dot b_2...\dot b_n}_{\rm n 位循环}=0.b_1b_2...b_n\underbrace{\dot b{_1}\dot b_2...\dot b_n}_{\rm n 位循环}
H=0.n位循环
b˙1b˙2...b˙n=0.b1b2...bnn位循环
b˙1b˙2...b˙n
H
∗
1
0
n
=
b
1
b
2
.
.
.
b
n
+
0.
b
˙
1
b
˙
2
.
.
.
b
˙
n
⏟
n
位循环
=
b
1
b
2
.
.
.
b
n
+
H
H*10^n=b_1b_2...b_n+0.\underbrace{\dot b{_1}\dot b_2...\dot b_n}_{\rm n 位循环}=b_1b_2...b_n+H
H∗10n=b1b2...bn+0.n位循环
b˙1b˙2...b˙n=b1b2...bn+H
解得
H
=
b
1
b
2
.
.
.
b
n
1
0
n
−
1
H=\frac{b_1b_2...b_n}{10^n-1}
H=10n−1b1b2...bn
因此任何有理数
a
a
a小数都可以写成两个整数相除的形式
a
=
A
B
=
c
1
c
2
.
.
.
c
r
+
a
1
a
2
.
.
.
a
m
+
b
1
b
2
.
.
.
b
n
1
0
n
−
1
1
0
m
a=\frac{A}B=c_1c_2...c_r+\frac{a_1a_2...a_m+\frac{b_1b_2...b_n}{10^n-1}}{10^m}
a=BA=c1c2...cr+10ma1a2...am+10n−1b1b2...bn
特别的,当
n
=
0
,
r
<
N
n=0,r<N
n=0,r<N时,
a
a
a为有限小数
当
0
<
m
<
M
,
r
<
N
0<m<M,r<N
0<m<M,r<N,
a
a
a为无限循环小数
当
r
→
+
∞
r\to+\infty
r→+∞,
a
a
a为无限不循环小数
证明 π \pi π是无理数的思路
可以利用反证法,假设
π
\pi
π是有理数,即
π
\pi
π可以写成两个整数
p
、
q
p、q
p、q相除的形式,
π
=
p
q
\pi=\frac pq
π=qp
然后利用
π
\pi
π的性质对等式进行推导变形,直到得出两个明显相互矛盾的结论,那么就可以说明
π
\pi
π不是有理数,即是无理数。
为了能够说明问题,我们先拿
2
\sqrt 2
2举例,证明
2
\sqrt 2
2是无理数
证明 2 \sqrt 2 2是无理数
假设
2
\sqrt 2
2为有理数,即
2
=
p
q
\sqrt 2 =\frac pq
2=qp,
p
,
q
p,q
p,q互为质数
⟹
q
2
=
p
\implies q\sqrt 2=p
⟹q2=p
利用根号的性质,两边开方,以得到整数
2
q
2
=
p
2
2q^2=p^2
2q2=p2
等式左边为偶数,右边是一个整数的平方,也为整数,那么
p
p
p一定是偶数,令
p
=
2
c
p=2c
p=2c,带入等式得,
q
2
=
2
c
2
q^2=2c^2
q2=2c2,等式右边为偶数,同理
q
q
q一定是偶数
,因为
p
,
q
p,q
p,q互为质数,不可能同时为偶数,因此假设不成立,即证明
p
,
q
p,q
p,q是无理数
证明 s i n 1 \rm sin1 sin1是无理数
同样的道理,假设
s
i
n
1
\rm sin1
sin1是有理数,即
s
i
n
1
=
p
q
{\rm sin}1 =\frac pq
sin1=qp,
p
,
q
p,q
p,q互为质数
根据泰勒公式
s
i
n
x
=
1
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
.
.
.
{\rm sin}x = 1-\frac {x^3}{3!}+\frac {x^5}{5!}-\frac {x^7}{7!}+...
sinx=1−3!x3+5!x5−7!x7+...
取
x
=
1
x=1
x=1得,
s
i
n
1
=
1
−
1
3
!
+
1
5
!
−
1
7
!
+
.
.
.
{\rm sin}1 = 1-\frac 1{3!}+\frac 1{5!}-\frac 1{7!}+...
sin1=1−3!1+5!1−7!1+...
为了利用泰勒展式的性质,两边同时乘以
q
!
q!
q!,得到
q
!
s
i
n
1
=
p
(
q
−
1
)
!
=
C
+
D
=
q
!
−
q
!
3
!
+
q
!
5
!
−
q
!
7
!
+
.
.
.
q!{\rm sin}1=p(q-1)!=C+D=q!-\frac {q!}{3!}+\frac {q!}{5!}-\frac {q!}{7!}+...
q!sin1=p(q−1)!=C+D=q!−3!q!+5!q!−7!q!+...
因为
p
(
q
−
1
)
!
p(q-1)!
p(q−1)!为整数,根据等式
q
!
s
i
n
1
q!{\rm sin}1
q!sin1也一定为整数,只需证明右侧展开式为小数即可推翻结论
假定
C
C
C为
q
!
s
i
n
1
q!{\rm sin}1
q!sin1的整数部分,
D
D
D为小数部分,
当
q
q
q为偶数时
C
=
q
!
−
q
!
3
!
+
q
!
5
!
−
q
!
7
!
+
.
.
.
q
!
(
q
−
1
)
!
C=q!-\frac {q!}{3!}+\frac {q!}{5!}-\frac {q!}{7!}+...\frac {q!}{(q-1)!}
C=q!−3!q!+5!q!−7!q!+...(q−1)!q!
D
=
±
(
1
q
+
1
−
1
(
q
+
1
)
(
q
+
2
)
(
q
+
3
)
+
.
.
.
)
D=\pm \left (\frac 1{q+1}-\frac 1{(q+1)(q+2)(q+3)}+...\right)
D=±(q+11−(q+1)(q+2)(q+3)1+...)
当
q
q
q为奇数时
C
=
q
!
−
q
!
3
!
+
q
!
5
!
−
q
!
7
!
+
.
.
.
q
!
q
!
C=q!-\frac {q!}{3!}+\frac {q!}{5!}-\frac {q!}{7!}+...\frac {q!}{q!}
C=q!−3!q!+5!q!−7!q!+...q!q!
D
=
±
(
1
(
q
+
1
)
(
q
+
2
)
−
1
(
q
+
1
)
(
q
+
2
)
(
q
+
3
)
(
q
+
4
)
+
.
.
.
)
D=\pm \left (\frac 1{(q+1)(q+2)}-\frac 1{(q+1)(q+2)(q+3)(q+4)}+...\right)
D=±((q+1)(q+2)1−(q+1)(q+2)(q+3)(q+4)1+...)
C每一项分子大于分母,D每一项分子小于分母,D为交错级数,且后一项小于前一项,第一项为小数。
无论q为奇数还是偶数,D始终介于0~1之间,因此
q
!
s
i
n
1
q!{\rm sin}1
q!sin1必须是小数,与前面推导矛盾,因此
s
i
n
1
\rm sin1
sin1为无理数
利用同样的办法可以怎么自然常数 e e e也为无理数
证明 e e e是无理数
同样的道理,假设
e
e
e是有理数,即
e
=
p
q
e=\frac pq
e=qp,
p
,
q
p,q
p,q互为质数
根据泰勒公式
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
x
4
4
!
+
.
.
.
e^x = 1+x+\frac {x^2}{2!}+\frac {x^3}{3!}+\frac {x^4}{4!}+...
ex=1+x+2!x2+3!x3+4!x4+...
取
x
=
1
x=1
x=1得,
e
=
1
+
1
+
1
2
!
+
1
3
!
+
1
4
!
+
.
.
.
e = 1+1+\frac 1{2!}+\frac 1{3!}+\frac 1{4!}+...
e=1+1+2!1+3!1+4!1+...
为了利用泰勒展式的性质,两边同时乘以
q
!
q!
q!,得到
q
!
e
=
p
(
q
−
1
)
!
=
C
+
D
=
q
!
+
q
!
+
q
!
2
!
+
q
!
3
!
+
q
!
4
!
+
.
.
.
q!e=p(q-1)!=C+D=q!+q!+\frac {q!}{2!}+\frac {q!}{3!}+\frac {q!}{4!}+...
q!e=p(q−1)!=C+D=q!+q!+2!q!+3!q!+4!q!+...
假定
C
C
C为
q
!
e
q!e
q!e的整数部分,
D
D
D为小数部分,
C
=
q
!
+
q
!
+
q
!
2
!
+
q
!
3
!
+
q
!
q
!
C=q!+q!+\frac {q!}{2!}+\frac {q!}{3!}+\frac {q!}{q!}
C=q!+q!+2!q!+3!q!+q!q!
D
=
1
q
+
1
+
1
(
q
+
1
)
(
q
+
2
)
+
1
(
q
+
1
)
(
q
+
2
)
(
q
+
3
)
+
.
.
.
D=\frac 1{q+1}+\frac 1{(q+1)(q+2)}+\frac 1{(q+1)(q+2)(q+3)}+...
D=q+11+(q+1)(q+2)1+(q+1)(q+2)(q+3)1+...
0
<
D
<
1
2
+
1
2
∗
2
+
1
2
∗
2
∗
2
+
.
.
.
=
1
0<D<\frac 12+\frac 1{2*2}+\frac 1{2*2*2}+...=1
0<D<21+2∗21+2∗2∗21+...=1
C
C
C为整数,
D
D
D始终介于0~1之间,因此
q
!
e
q!e
q!e必为小数,与推导结论矛盾,因此
e
e
e为无理数
证明 π \pi π是无理数
假设
π
\pi
π是有理数,即
π
=
p
q
\pi=\frac pq
π=qp,
p
,
q
p,q
p,q互为质数
构造一个多项式函数
f
(
x
)
=
x
n
(
p
−
q
x
)
n
n
!
=
q
n
x
n
(
π
−
x
)
n
n
!
f(x)=\frac{x^n(p-qx)^n}{n!}=\frac{q^nx^n(\pi-x)^n}{n!}
f(x)=n!xn(p−qx)n=n!qnxn(π−x)n
再定义一个多项式函数
F
(
x
)
F(x)
F(x),该函数由
f
(
x
)
f(x)
f(x)及其各偶次阶导数组成:
F
(
x
)
=
f
(
x
)
−
f
(
2
)
(
x
)
+
f
(
4
)
(
x
)
−
f
(
6
)
(
x
)
+
.
.
.
+
(
−
1
)
n
f
(
2
n
)
(
x
)
F(x)=f(x)-f^{(2)}(x)+f^{(4)}(x)-f^{(6)}(x)+...+(-1)^nf^{(2n)}(x)
F(x)=f(x)−f(2)(x)+f(4)(x)−f(6)(x)+...+(−1)nf(2n)(x)
F
(
2
)
(
x
)
=
f
(
2
)
(
x
)
−
f
(
4
)
(
x
)
+
f
(
6
)
(
x
)
−
.
.
.
+
(
−
1
)
n
f
(
2
n
+
2
)
(
x
)
F^{(2)}(x)=f^{(2)}(x)-f^{(4)}(x)+f^{(6)}(x)-...+(-1)^nf^{(2n+2)}(x)
F(2)(x)=f(2)(x)−f(4)(x)+f(6)(x)−...+(−1)nf(2n+2)(x)
F
(
x
)
F(x)
F(x)有一个性质:
F
(
2
)
(
x
)
+
F
(
x
)
=
f
(
x
)
+
(
−
1
)
n
f
(
2
n
+
2
)
(
x
)
F^{(2)}(x)+F(x)=f(x)+(-1)^nf^{(2n+2)}(x)
F(2)(x)+F(x)=f(x)+(−1)nf(2n+2)(x)
多项式
f
(
x
)
f(x)
f(x)最高次幂为
2
n
2n
2n,因此
(
−
1
)
n
f
(
2
n
+
2
)
(
x
)
=
0
(-1)^nf^{(2n+2)}(x)=0
(−1)nf(2n+2)(x)=0
F
(
2
)
(
x
)
+
F
(
x
)
=
f
(
x
)
F^{(2)}(x)+F(x)=f(x)
F(2)(x)+F(x)=f(x)
利用这个微分方程的恒等式做一些变形,
两边同乘
s
i
n
x
{\rm sin}x
sinx
f
(
x
)
s
i
n
x
=
F
(
2
)
(
x
)
s
i
n
x
+
F
(
x
)
s
i
n
x
=
d
d
x
{
F
′
(
x
)
s
i
n
x
−
F
(
x
)
c
o
s
x
}
f(x){\rm sin}x=F^{(2)}(x){\rm sin}x+F(x){\rm sin}x=\frac{\rm d}{{\rm d}x}\{F'(x){\rm sin}x-F(x){\rm cos}x\}
f(x)sinx=F(2)(x)sinx+F(x)sinx=dxd{F′(x)sinx−F(x)cosx}
x
x
x的范围为0~
π
\pi
π时,
f
(
x
)
f(x)
f(x) ,
s
i
n
x
{\rm sin}x
sinx 都恒大于0
两边同时从0~
π
\pi
π积分:
∫
0
π
f
(
x
)
s
i
n
x
d
x
=
[
F
′
(
x
)
s
i
n
x
−
F
(
x
)
c
o
s
x
]
0
π
=
F
(
π
)
+
F
(
0
)
\int_0^\pi {f(x){\rm sin}x} \,{\rm d}x=[F'(x){\rm sin}x-F(x){\rm cos}x]{_0^\pi}=F(\pi)+F(0)
∫0πf(x)sinxdx=[F′(x)sinx−F(x)cosx]0π=F(π)+F(0)
根据定义,注意到
f
(
x
)
=
f
(
π
−
x
)
f(x)=f(\pi-x)
f(x)=f(π−x),
f
′
′
(
x
)
=
f
′
′
(
π
−
x
)
.
.
.
f''(x)=f''(\pi-x)...
f′′(x)=f′′(π−x)...有
f
(
2
n
)
(
x
)
=
f
(
2
n
)
(
π
−
x
)
f^{(2n)}(x)=f^{(2n)}(\pi-x)
f(2n)(x)=f(2n)(π−x)
因此
F
(
x
)
=
F
(
π
−
x
)
F(x)=F(\pi-x)
F(x)=F(π−x)
f
(
x
)
f(x)
f(x)二项式展开
f
(
x
)
=
∑
i
=
0
n
C
n
i
p
n
−
i
(
−
q
)
i
x
n
+
i
n
!
f(x)=\frac{\sum_{i=0}^nC{_n^ip^{n-i}(-q)^ix^{n+i}}}{n!}
f(x)=n!∑i=0nCnipn−i(−q)ixn+i
f
(
k
)
(
0
)
=
{
0
,
k
<
n
k
!
(
k
−
n
)
!
(
2
n
−
k
)
!
p
2
n
−
k
(
−
q
)
k
−
n
,
n
≤
k
≤
2
n
0
,
k
>
2
n
f^{(k)}(0)=\begin{cases}0,&k<n \\ \frac {k!}{(k-n)!(2n-k)!}p^{2n-k}(-q)^{k-n},&n \leq k\leq2n\\0 ,&k>2n \end{cases}
f(k)(0)=⎩
⎨
⎧0,(k−n)!(2n−k)!k!p2n−k(−q)k−n,0,k<nn≤k≤2nk>2n
其中
k
!
(
k
−
n
)
!
(
2
n
−
k
)
!
=
C
n
k
−
n
∏
i
=
1
k
(
n
+
i
)
∈
Z
\frac {k!}{(k-n)!(2n-k)!}=C{_n^{k-n}}\prod _{i=1}^{k}(n+i)\in Z
(k−n)!(2n−k)!k!=Cnk−ni=1∏k(n+i)∈Z
因此
f
(
k
)
(
0
)
∈
Z
f^{(k)}(0)\in Z
f(k)(0)∈Z
对于偶数
k
k
k,
f
(
k
)
(
π
)
=
f
(
k
)
(
0
)
∈
Z
f^{(k)}(\pi)=f^{(k)}(0)\in Z
f(k)(π)=f(k)(0)∈Z,因此
F
(
0
)
,
F
(
π
)
∈
Z
F(0),F(\pi)\in Z
F(0),F(π)∈Z
因此得出积分
∫
0
π
f
(
x
)
s
i
n
x
d
x
∈
Z
\int_0^\pi {f(x){\rm sin}x} \,{\rm d}x\in Z
∫0πf(x)sinxdx∈Z
又因为
0
<
∫
0
π
f
(
x
)
s
i
n
x
d
x
<
∫
0
π
f
(
x
)
d
x
<
∫
0
π
q
n
x
n
π
n
n
!
d
x
=
q
n
π
2
n
+
1
(
n
+
1
)
!
0<\int_0^\pi f(x){\rm sin}x\,{\rm d}x<\int_0^\pi f(x)\,{\rm d}x<\int_0^\pi \frac{q^nx^n\pi^n}{n!}\,{\rm d}x=\frac{q^n\pi^{2n+1}}{(n+1)!}
0<∫0πf(x)sinxdx<∫0πf(x)dx<∫0πn!qnxnπndx=(n+1)!qnπ2n+1
当
n
n
n取足够大时,分母以阶乘的速度增长,必定会大于分子,导致存在一个足够大的n,使得积分
∫
0
π
f
(
x
)
s
i
n
x
d
x
\int_0^\pi f(x){\rm sin}x\,{\rm d}x
∫0πf(x)sinxdx的值介于0~1,但是又由于
F
(
π
)
+
F
(
0
)
F(\pi)+F(0)
F(π)+F(0)为整数,与前面性质矛盾,因此
π
\pi
π是无理数。
小结:对于多项式 f ( x ) f(x) f(x),取一个足够大的反例 n n n,多项式积分 ∫ 0 π f ( x ) s i n x d x \int_0^\pi f(x){\rm sin}x\,{\rm d}x ∫0πf(x)sinxdx按性质本应是整数,但通过放缩证明它是小数,得到一个矛盾的结果,因此推导出 π \pi π是无理数