
弘毅:如何证明π是无理数?
我:这个要用到高等数学知识,要用到微积分,即分析的方法。
首先说明一下,这里面会涉及到微积分的一些初等知识,比如分部积分法,极限计算等。
整体思路是反证法,不是直接去证明它作为小数表示是无限不循环的。
因为π的定义,即使是最初等的用圆的周长与直径的比,那也并不是真正的初等。
因为这涉及到“弯弯的”曲线的长度的问题,这其实就不是初等内容了。

你心理上是不是不太好接受?
问问自己,你有仔细想过弯的长度要怎么定义吗?
因此下文需要的基础是一点积分和极限的基础知识,当然即便没有,你也可通览大概,了解主要的精神和宗旨。
首先,这里π的严格定义是函数

即,函数

1. 总体证明思路
对于π和e,两者的无理性证明,主要宗旨是相同的。
对于e的无理性证明,详见我的专栏文章:
温欣提市:无理数π与e和你的纠结系列2|如何证明 e 是无理数?zhuanlan.zhihu.com
类似于自然对数e的无理性证明,这里的方法也是分析的。
即找到π的一个好的有理数列


这样就很容易得到矛盾。
假设π是有理数, 即,

则

这与非0数列

2. 两个引理
历史上,有很多人证明过π的无理性,我们这里采用美国数学家Ivan Morton Niven的方式。

因为证明是构造性的,即构造上述的有理数列

下面先介绍两个引理。
假设π是有理数, 即,

令

显然这是一个有理系数的2n次多项式。
对于

引理1 函数


证明:记函数


二项式展开,很容易得到多项式函数


即采用统一记号有



直接求导或者对比泰勒展开式,很容易得到

不管i是否比n大,这显然是个整数。
由于等式


因此高级导函数在π处取值也是整数。QED.
引理2 对任何2n次多项式


其中

证明: 这只要反复利用分部积分法即可,

如此,一直继续即可,下略。QED.
3. π无理性的证明
有了上述两个引理,下面就可以来直接证明π是无理数了。
假设π是有理数, 即,

在引理2中取2n次多项式为引理1中构造的

于是在等式

中右边是一个整数, 这是因为引理1的结论函数


而等式左边,积分中函数都是在区间

而我们对等式左边放缩一下,得到:

于是产生矛盾。QED.
因此在坚持大原则基础上,即利用一个正整数同时极限为0,
对函数
