π是无理数证明定积分_如何证明π是无理数?|无理数π与e和你的纠结系列3

e69e965a6fc374fada82faa05373e954.png

弘毅:如何证明π是无理数?

我:这个要用到高等数学知识,要用到微积分,即分析的方法。


首先说明一下,这里面会涉及到微积分的一些初等知识,比如分部积分法,极限计算等。

整体思路是反证法,不是直接去证明它作为小数表示是无限不循环的。

因为π的定义,即使是最初等的用圆的周长与直径的比,那也并不是真正的初等。

因为这涉及到“弯弯的”曲线的长度的问题,这其实就不是初等内容了。

1d5a417c857df47ae747f29f26947268.png

你心理上是不是不太好接受?

问问自己,你有仔细想过弯的长度要怎么定义吗?

因此下文需要的基础是一点积分和极限的基础知识,当然即便没有,你也可通览大概,了解主要的精神和宗旨

首先,这里π的严格定义是函数

equation?tex=f%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%7B%2B%5Cinfty%7D%28-1%29%5En%5Cfrac%7Bx%5E%7B2n%2B1%7D%7D%7B%282n%2B1%29%21%7D
最小正根

即,函数

equation?tex=y%3D%5Csin%28x%29
的最小正根

1. 总体证明思路

对于π和e,两者的无理性证明,主要宗旨是相同的。

对于e的无理性证明,详见我的专栏文章

温欣提市:无理数π与e和你的纠结系列2|如何证明 e 是无理数?​zhuanlan.zhihu.com
99bad4d1472338e0261eb2f0f990bd4a.png

类似于自然对数e的无理性证明,这里的方法也是分析的。

即找到π的一个好的有理数列

equation?tex=%5C%7B%5Cfrac%7Bp_n%7D%7Bq_n%7D%5C%7D 逼近,使得非0数列
equation?tex=%7Cq_n%5Cpi-p_n%7C 极限为0.

这样就很容易得到矛盾。

假设π是有理数, 即,

equation?tex=%E5%AD%98%E5%9C%A8p%2Cq%5Cin%5Cmathbb%7BN%7D%5E%2B%2C+%5Cpi%3D%5Cfrac%7Bp%7D%7Bq%7D.

equation?tex=%7Cq_n%5Cpi-p_n%7C%3D%7Cq_n%5Cfrac%7Bp%7D%7Bq%7D-p_n%7C%3D%5Cfrac%7B%7Cq_np-qp_n%7C%7D%7Bq%7D%3E%5Cfrac%7B1%7D%7Bq%7D%3E0

这与非0数列

equation?tex=%7Cq_n%5Cpi-p_n%7C 极限为0矛盾。

2. 两个引理

历史上,有很多人证明过π的无理性,我们这里采用美国数学家Ivan Morton Niven的方式。

96e6ccdca9a1024dcb74a83870503cbf.png
Niven

因为证明是构造性的,即构造上述的有理数列

equation?tex=%5C%7B%5Cfrac%7Bp_n%7D%7Bq_n%7D%5C%7D,我们需要一些准备工作。

下面先介绍两个引理。

假设π是有理数, 即,

equation?tex=%E5%AD%98%E5%9C%A8p%2Cq%5Cin%5Cmathbb%7BN%7D%5E%2B%2C+%5Cpi%3D%5Cfrac%7Bp%7D%7Bq%7D.

equation?tex=f_n%28x%29%3Dq%5En%5Cfrac%7Bx%5En%28%5Cpi-x%29%5En%7D%7Bn%21%7D%3D%5Cfrac%7Bx%5En%28p-qx%29%5En%7D%7Bn%21%7D .

显然这是一个有理系数的2n次多项式。

对于

equation?tex=0%3Cx%3C%5Cpi%2C+%E6%9C%89f_n%28x%29%3E0%2C+%E4%B8%94f_n%28x%29%5Crightarrow0%28n%5Crightarrow%2B%5Cinfty%29.

引理1 函数

equation?tex=f_n%28x%29 的任意高阶导数在
equation?tex=x%3D0%E5%92%8Cx%3D%5Cpi 处的取值是整数。

证明:记函数

equation?tex=f_n%28x%29 的k阶导数为
equation?tex=f_n%5E%7B%28k%29%7D%28x%29 .

二项式展开,很容易得到多项式函数

equation?tex=f_n%28x%29中的单项式项为

equation?tex=x_%7Bn%2Bk%7D%28-q%29%5Ekp%5E%7Bn-k%7D%5Cfrac%7B%5Cbinom%7Bn%7D%7Bk%7D%7D%7Bn%21%7D%3Dx_%7Bn%2Bk%7D%5Cfrac%7Bc_%7Bn%2Bk%7D%7D%7Bn%21%7D%2C%E5%85%B6%E4%B8%ADc_%7Bn%2Bk%7D%3D%28-q%29%5Ekp%5E%7Bn-k%7D%5Cbinom%7Bn%7D%7Bk%7D%5Cin%5Cmathbb%7BZ%7D.

即采用统一记号有

equation?tex=f_n%28x%29%3D%5Csum_%7Bi%3D0%7D%5E%7B2n%7D%5Cfrac%7Bc_i%7D%7Bn%21%7Dx%5Ei.这里对
equation?tex=i%3Cn 取系数
equation?tex=c_i%3D0.

直接求导或者对比泰勒展开式,很容易得到

equation?tex=f_n%5E%7B%28i%29%7D%280%29%3D%5Cfrac%7Bi%21%7D%7Bn%21%7Dc_i%5Cin%5Cmathbb%7BZ%7D.

不管i是否比n大,这显然是个整数。

由于等式

equation?tex=f_n%28%5Cpi-x%29%3Df_n%28x%29 , 两边同时求导,我们总能得到:

equation?tex=%28-1%29%5Eif_n%5E%7B%28i%29%7D%28%5Cpi%29%3Df_n%5E%7B%28i%29%7D%280%29%5Cin%5Cmathbb%7BZ%7D.%5C%5C

因此高级导函数在π处取值也是整数。QED.

引理2 对任何2n次多项式

equation?tex=f%28x%29 , 我们有如下等式:

equation?tex=%5Cint_%7B0%7D%5E%7B%5Cpi%7Df%28x%29%5Csin+x+%5C%2C+dx%3DF%280%29%2BF%28%5Cpi%29%2C%5C%5C

其中

equation?tex=F%28x%29%3D%5Csum_%7Bk%3D0%7D%5E%7Bn%7D%28-1%29%5Ekf%5E%7B%282k%29%7D%28x%29.

证明: 这只要反复利用分部积分法即可,

equation?tex=%5Cint_%7B0%7D%5E%7B%5Cpi%7Df%28x%29%5Csin+x+%5C%2C+dx%3D%5Cint_%7B0%7D%5E%7B%5Cpi%7Df%28x%29+%5C%2C+d%28-%5Ccos+x%29%5C%5C+%3Df%28x%29%28-%5Ccos+x%29%7C_0%5E%7B%5Cpi%7D-%5Cint_%7B0%7D%5E%7B%5Cpi%7D-%5Ccos+x+%5C%2C+d%28f%28x%29%29%5C%5C+%3Df%28x%29%28-%5Ccos+x%29%7C_0%5E%7B%5Cpi%7D%2B%5Cint_%7B0%7D%5E%7B%5Cpi%7D%5Ccos+x+f%5E%7B%281%29%7D%28x%29%5C%2C+dx%5C%5C+%3Df%28x%29%28-%5Ccos+x%29%7C_0%5E%7B%5Cpi%7D%2B%5Cint_%7B0%7D%5E%7B%5Cpi%7Df%5E%7B%281%29%7D%28x%29%5C%2C+d%28%5Csin+x%29.%5C%5C

如此,一直继续即可,下略。QED.

3. π无理性的证明

有了上述两个引理,下面就可以来直接证明π是无理数了。

假设π是有理数, 即,

equation?tex=%E5%AD%98%E5%9C%A8p%2Cq%5Cin%5Cmathbb%7BN%7D%5E%2B%2C+%5Cpi%3D%5Cfrac%7Bp%7D%7Bq%7D.

在引理2中取2n次多项式为引理1中构造的

equation?tex=f_n%28x%29 ,

于是在等式

equation?tex=%5Cint_%7B0%7D%5E%7B%5Cpi%7Df_n%28x%29%5Csin+x+%5C%2C+dx%3DF%280%29%2BF%28%5Cpi%29%2C%5C%5C

中右边是一个整数, 这是因为引理1的结论函数

equation?tex=f_n%28x%29 的任意高阶导数在
equation?tex=x%3D0%E5%92%8Cx%3D%5Cpi 处的取值是整数。

而等式左边,积分中函数都是在区间

equation?tex=%280%2C%5Cpi%29 上恒为正的,故积分值是一个正整数,即至少大于等于1。

而我们对等式左边放缩一下,得到:

equation?tex=%5Cint_%7B0%7D%5E%7B%5Cpi%7Df_n%28x%29%5Csin+x+%5C%2C+dx%5Cleq+%5Cint_%7B0%7D%5E%7B%5Cpi%7D%5Cfrac%7B%28q%5Cpi%5E2%29%5En%7D%7Bn%21%7D%5Ccdot+1+%5C%2C+dx%3D%5Cpi%5Cfrac%7B%28q%5Cpi%5E2%29%5En%7D%7Bn%21%7D%5Crightarrow0%28n%5Crightarrow+%2B%5Cinfty%29.%5C%5C

于是产生矛盾。QED.

因此在坚持大原则基础上,即利用一个正整数同时极限为0,

对函数

equation?tex=f_n%28x%29%3Dq%5En%5Cfrac%7Bx%5En%28%5Cpi-x%29%5En%7D%7Bn%21%7D%3D%5Cfrac%7Bx%5En%28p-qx%29%5En%7D%7Bn%21%7D 的精妙构造才是
Niven的证明重点。

多谢关注和点赞,支持原创高质量文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值