证明 π \pi π是无理数
假设圆周率
π
\pi
π是有理数,且
p
,
q
p,q
p,q是两个互相互质的整数。那么:
π
=
p
q
\pi = \frac{p}{q}
π=qp
我们尝试构造一个函数
f
(
x
)
f(x)
f(x)。其表达式如下:
f
(
x
)
=
x
n
(
p
−
q
x
)
n
n
!
(
n
∈
N
)
f(x) = \frac{x^n(p-qx)^n}{n!}(n \in N)
f(x)=n!xn(p−qx)n(n∈N)
用二项式定理将分子展开,写成下面多项式求和的形式:
f
(
x
)
=
∑
m
=
n
2
n
a
m
x
m
n
!
(
a
m
,
m
∈
Z
)
f(x) = \sum_{m=n}^{2n}\frac{a_mx^m}{n!}(a_m,m\in Z)
f(x)=m=n∑2nn!amxm(am,m∈Z)
对上面的函数进行
n
n
n次求导可得到一个关系:
f
(
k
)
(
0
)
∈
Z
,
∀
k
=
0
,
1
,
2...
f^{(k)}(0) \in Z,\forall k = 0,1,2...
f(k)(0)∈Z,∀k=0,1,2...
我们对
f
(
x
)
f(x)
f(x)进行变形可以发现:
f
(
x
)
=
x
n
q
n
(
p
q
−
x
)
n
n
!
=
x
n
q
n
(
π
−
x
)
n
n
!
f(x) = \frac{x^nq^n(\frac{p}{q}-x)^n}{n!}=\frac{x^nq^n(\pi-x)^n}{n!}
f(x)=n!xnqn(qp−x)n=n!xnqn(π−x)n
我们已知:
f
(
x
)
=
f
(
π
−
x
)
f(x) = f(\pi-x)
f(x)=f(π−x)
上式两边求
k
k
k次导数:
f
(
k
)
(
x
)
=
(
−
1
)
k
f
(
k
)
(
π
−
x
)
f^{(k)}(x) = (-1)^kf^{(k)}(\pi-x)
f(k)(x)=(−1)kf(k)(π−x)
我们令
x
=
π
x = \pi
x=π得到:
f
(
k
)
(
π
)
=
(
−
1
)
k
f
(
k
)
(
0
)
∈
Z
f^{(k)}(\pi) = (-1)^kf^{(k)}(0)\in Z
f(k)(π)=(−1)kf(k)(0)∈Z
再构造一个函数
F
(
x
)
F(x)
F(x):
F
(
x
)
=
f
(
x
)
−
f
(
2
)
(
x
)
+
f
(
4
)
(
x
)
−
.
.
.
+
(
−
1
)
n
f
(
2
n
)
(
x
)
F(x) = f(x)-f^{(2)}(x)+f^{(4)}(x)-...+(-1)^nf^{(2n)}(x)
F(x)=f(x)−f(2)(x)+f(4)(x)−...+(−1)nf(2n)(x)
上面的函数求二次导:
F
′
′
(
x
)
=
f
(
2
)
(
x
)
−
f
(
4
)
(
x
)
+
f
(
6
)
(
x
)
−
.
.
.
+
(
−
1
)
n
f
(
2
n
+
2
)
(
x
)
F^{''}(x) = f^{(2)}(x)-f^{(4)}(x)+f^{(6)}(x)-...+(-1)^nf^{(2n+2)}(x)
F′′(x)=f(2)(x)−f(4)(x)+f(6)(x)−...+(−1)nf(2n+2)(x)
得到:
F
(
x
)
+
F
′
′
(
x
)
=
f
(
x
)
+
(
−
1
)
n
f
(
2
n
+
2
)
(
x
)
F(x)+F^{''}(x) = f(x)+(-1)^nf^{(2n+2)}(x)
F(x)+F′′(x)=f(x)+(−1)nf(2n+2)(x)
又因为
f
(
x
)
f(x)
f(x)是
2
n
2n
2n次多项式,故可以得到:
f
(
2
n
+
2
)
(
x
)
=
0
f^{(2n+2)}(x) = 0
f(2n+2)(x)=0
故:
F
(
x
)
+
F
′
′
(
x
)
=
f
(
x
)
F(x)+F^{''}(x) = f(x)
F(x)+F′′(x)=f(x)
现在我们要求
f
(
x
)
s
i
n
x
f(x)sinx
f(x)sinx的原函数:
∫
f
(
x
)
s
i
n
x
d
x
=
∫
(
F
(
x
)
+
F
′
′
(
x
)
)
s
i
n
x
d
x
=
F
′
(
x
)
s
i
n
x
−
F
(
x
)
c
o
s
x
+
c
\int f(x)sinxdx = \int(F(x)+F^{''}(x))sinxdx = F^{'}(x)sinx-F(x)cosx+c
∫f(x)sinxdx=∫(F(x)+F′′(x))sinxdx=F′(x)sinx−F(x)cosx+c
我们求
f
(
x
)
s
i
n
x
f(x)sinx
f(x)sinx在
[
0
,
π
]
[0,\pi]
[0,π]的定积分:
A
=
∫
0
π
f
(
x
)
s
i
n
x
d
x
=
F
(
π
)
+
F
(
0
)
A = \int_0^{\pi}f(x)sinxdx = F(\pi)+F(0)
A=∫0πf(x)sinxdx=F(π)+F(0)
而
f
(
x
)
f(x)
f(x)的任意阶导数在
0
0
0和
π
\pi
π上的值还是整数,而
F
(
x
)
F(x)
F(x)是其线性组合,因此
A
∈
Z
A\in Z
A∈Z
但是,在
0
<
x
<
π
0<x<\pi
0<x<π时,
f
(
x
)
>
0
f(x)>0
f(x)>0,因此
f
(
x
)
s
i
n
x
>
0
f(x)sinx>0
f(x)sinx>0。
A
=
∫
0
π
f
(
x
)
s
i
n
x
d
x
>
0
A = \int_0^{\pi}f(x)sinxdx>0
A=∫0πf(x)sinxdx>0
对构造的函数放缩,
0
<
x
<
π
0<x<\pi
0<x<π时:
f
(
x
)
=
x
n
(
p
−
q
x
)
n
n
!
<
π
n
p
n
n
!
,
s
i
n
x
<
1
f(x) = \frac{x^n(p-qx)^n}{n!}<\frac{\pi^{n}p^n}{n!},sinx<1
f(x)=n!xn(p−qx)n<n!πnpn,sinx<1
所以:
f
(
x
)
s
i
n
x
<
π
n
p
n
n
!
f(x)sinx<\frac{\pi^np^n}{n!}
f(x)sinx<n!πnpn
因此可以得到:
A
=
∫
0
π
f
(
x
)
s
i
n
x
d
x
<
∫
0
π
π
n
p
n
n
!
d
x
=
π
n
+
1
p
n
n
!
A = \int_0^{\pi}f(x)sinxdx<\int_0^{\pi}\frac{\pi^np^n}{n!}dx=\frac{\pi^{n+1}p^n}{n!}
A=∫0πf(x)sinxdx<∫0πn!πnpndx=n!πn+1pn
当
n
→
∞
n\rightarrow \infty
n→∞时,
π
n
+
1
p
n
n
!
<
<
1
\frac{\pi^{n+1}p^n}{n!}<<1
n!πn+1pn<<1,因此
∃
n
\exists n
∃n使得:
0
<
A
<
1
0<A<1
0<A<1
这与前面我们求得的
A
∈
Z
A\in Z
A∈Z矛盾。故假设不成立,
π
\pi
π是无理数。