TEST 第一篇

深度学习可解释性综述 陈冲

1、内在可解释模型

2、基于归因的方法

        2.1 基于反向传播的方法

                可看:1、Simonyan等[26]提出的显著性映射(Saliencymas)方法,[26]SIMONYAN K,VEDALDI A,ZISSERMAN A.Deep inside convolutionalnetworks:Visualising imageclassification models andsaliencymaps[J].arXiv:1312.6034,2013.

  1. Shrikumar 等[27]提出的输入 X梯度方 法(InputX Gradient)扩 展 了 显 著 性方法,[27]SHRIKUMARA,GREENSIDEP,SHCHERBINAA,etal.Not justablackbox:Learning important features through propagating activation differences[J].arXiv:1605.01713,2016.
  2. 反卷积(Deconvolution)主 要 用 在 CNN 的 解 释 中。ZFNet[28]在反向传播过程中将负梯度设置为零生成特征图,然后在 AlexNet[29]中的5个卷积层上进行反卷积和特征可视化,从而实现解释的目的。[28]ZEILER M D,FERGUSR.Visualizingandunderstandingcon- volutionalnetworks[C]∥European Conferenceon Computer Vision.Berlin:Springer,2014:818-833.

[29]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classificationwithdeepconvolutionalneuralnetworks[J].Com- municationsoftheACM,2017,60(6):84-9

4、Springenberg等[30]提 出 的 引 导 反

向传播(GuidedBackpropagation)方法是对反卷积方法的改进,它的工作原理是计算输出fc(x)对输入x的梯 度,并 且 为了找出图片中的最大激活特征,其在反向传播过程中将负梯度设置为零。

Sundararajan等[31]提出的积分梯度(IntegratedGradients,IG)方法

平滑梯度(SmoothGrad,SG)[32]是一种向图像中添加噪声以生成新图像的技术,每次将随机高斯噪声 N(0,σ2)添加到给定的输入图像中,并计算相应的梯度。

Zhou等[33]提出的类激活映射 (ClassActivation Maps,CAM)是一种可视 化 方 法,

Selvaraju等[34]在CAM 的基础上提出 梯 度 类 激 活 映 射(Gradient-ClassActiva-

tionMaps,Grad-CAM)方法,该方法克服了上述缺点,根据特定层的特征图 Ak 计算输出fc(x)的梯度,

Chattopadhyay等[35]提 出 的 Grad-CAM+ + 方 法 是 对Grad-CAM 的扩展,该方法提供了更好的视觉可解释性,并且能够检测多 个 目 标 对 象,弥 补 了 Grad-CAM 方 法 的 缺 陷,即在处理出现多个相同类别的图像时,可能会导致目标对象定位不准确的问题。

Bach等[36]提出的分层相 关传播 (LayerwiseRelevancePropagation,LRP)是一种基于非线性分类器像素分解的方法,该方法计算层之间的像素相关性分数,并根据结果生成热力图。

Kinder-mans等[37]提出 的 PatterNet和 PatternAttribution技 术 也 是一种逐层反向传播方法,但 是 与 LRP方 法 不 同 的 是,这 两 种

方法需要计算数据中重要信息的方向α+ (见式(10)):Patter-Net方法用α+ 替换权重ω;PatternAttribution方法用ω⊙α+替换权重ω。

[30]SPRINGENBERGJT,DOSOVITSKIY A,BROXT,etal.Strivingforsimplicity:Theallconvolutionalnet[J].arXiv:1412.6806,2014.

[31]SUNDARARAJAN M,TALY A,YAN Q.Axiomaticattributionfordeepnetworks[C]∥InternationalConferenceon MachineLearning.NewYork:PMLR,2017:3319-3328.

[32]SMILKOV D,THORAT N,KIM B,etal.Smoothgrad:removingnoisebyaddingnoise[J].arXiv:1706.03825,2017.

[33]ZHOU B,KHOSLA A,LAPEDRIZA A,etal.Learningdeep featuresfordiscriminativelocalization[C]∥Proceedingsofthe IEEEConferenceonComputerVisionandPatternRecognition.NewJersey:IEEE,2016:2921-2929.

[34]SELVARAJU R R,COGSWELL M,DAS A,etal.Gradcam:Visualexplanationsfromdeepnetworksviagradient-basedlocalization[C]∥ProceedingsoftheIEEEInternationalConferenceonComputerVision.Washington:IEEEComputerSociety,2017:618-626.

[35]CHATTOPADHAY A,SARKAR A,HOWLADER P,etal.Grad-cam+ +:Generalizedgradient-basedvisualexplanations for deep convolutionalnetworks[C]∥2018IEEE WinterConferenceon Applicationsof Computer Vision(WACV).New Jersey:IEEE,2018:839-847

[36]BACHS,BINDERA,MONTAVONG,etal.Onpixel-wise explanations for nonlinear classifier decisionsbylayer-wiserele-

vancepropagation[J].PLoSOne,2015,10(7):1-46.

[37]KINDERMANSP-J,SCHÜTTKT,ALBER M,etal.Learninghowtoexplainneuralnetworks:Patternnetandpatternattribution[J].arXiv:1705.05598,2017.

2.2基于扰动的方法

基于扰动的方法被广泛应用于解释深层图像模型[38]。该方法的基本思想是通过修改模型的输入来监测模型输出结果的变化。对模型输出的变化表明了输入的哪些部分对模型的决策结果是重要的。

Zeiler等[28]提出的遮挡(Occlusion)方法

Ribeiro等[39]提出的局部可解释模型(LocalInterpretableModelExplanations,LIME)是一种与模型内部结构无关的方法,可以使用简单的、更易解释的模型g(如线性回归,g(z)=w·z)局部逼近复杂模型。

Wang等[40]提出的分类加权类激活 (Score-Weighted

ClassActivation,Score-CAM)方 法 是 一 种 基 于 CAM 的 梯 度无关的解释方法。

Petsiuk等[41]提出的随机输入 抽 样 解 释(RandomizedInputSamplingforExplanation,RISE)方法通过随机屏蔽输入计算特征的重要性来测试模型的输出。

Fong等[42]提出的极值扰动(ExtremalPerturbations)方法会对神经网络中特定神经元的激活产生非常大的影响。

[38]DABKOWSKIP,GAL Y.Realtimeimagesaliencyforblackboxclassifiers[C]∥Proceedingofthe31stInternationalCon-

ferenceonNeuralInformationProcessingSystems.LongBeach:CurranAssociatesInc,2017:6970-6979.

[39]RIBEIRO M T,SINGHS,GUESTRIN C.“WhyshouldItrustyou?”Explainingthepredictionsofanyclassifier[C]∥Procee-

dingsofthe22nd ACM SIGKDDInternationalConferenceonKnowledgeDiscoveryandDataMining.2016:1135-1144.

[40]WANG H,WANGZ,DU M,etal.Score-CAM:Score-weightedvisualexplanationsforconvolutionalneuralnetworks[C]∥Pro-ceedingsoftheIEEE/CVFConferenceonComputerVisionandPattern Recognition Workshops.New Jersey:IEEE,2020:

24-25.

[41]PETSIUK V,DAS A,SAENKO K.Rise:Randomized inputsamplingforexplanationofblack-boxmodels[J].arXiv:1806.

07421,2018.

[42]FONG R C,VEDALDIA.Interpretableexplanationsofblackboxesbymeaningfulperturbation[C]∥ProceedingsoftheIEEE InternationalConference on Computer Vision.New Jersey:IEEE,2017:3429-3437.

在医疗诊断中,Zhang等[2]提出了一个包含图像模型和 语言 模 型 的 MDNet网 络,用于在医学图像和诊断之间进 行 多模式映射。

[2] ZHANGZ,XIE Y,XING F,etal.Mdnet:Asemanticallyand visuallyinterpretable medicalimagediagnosisnetwork[C]∥ ProceedingsoftheIEEE ConferenceonComputerVisionand Pattern Recognition.Washington:IEEE ComputerSociety,2017: 6428-6436

4.1定性评估

Oviedo等[65]提出了平均类激活映射(averageClassActi-vationMaps,averageCAM)方 法,该方法提供的全局解释可以由专家通过分析显著性图的形态和细粒度定性分析评估,而且特定用户可能从专家反馈中受益

定量评估

正确性

Adebayo等[66]引入了模型参数随机化检查方 法,该 方 法从上到下破坏已学习的权重,并将可解释性方法应用到每个随机状态。如果随机化后的解释与原始解释相同,则 该 解 释对模型不敏感;如果两种解释不同,则不能保证原始解释完全正确。

Yeh等[67]提出了最 大 灵 敏 度(Max-Sensitivity,MS)方法(见式(23)),根据 解 释Φ(fc,x)在 输 入x′的 微 小 扰 动 下 的最大变化来衡量可靠性。

此外,Ancona等[68]提 出 根 据 sensitivity-n 标 准 来 评 估XAI方法得到的特征重要性得分或热力图的正确性,

[65]OVIEDOF,RENZ,SUNS,etal.FastandinterpretableclassificationofsmallX-raydiffractiondatasetsusingdataaugmentationanddeepneuralnetworks [J].NPJComputationalMaterials,2019,5(1):1-9.

[66]ADEBAYOJ,GILMERJ,MUELLY M,etal.Sanitychecksforsaliencymaps[C]∥Proceedingofthe32ndInternationalConferenceon NeuralInformationProcessingSystems.Montréal:CurranAssociatesInc,2018:9525-9536.

[67]YEHCK,HSIEHCY,SUGGALAA,etal.Onthe(in)fidelityandsensitivityofexplanations[C]∥Proceedingofthe33rdIn-

ternationalConferenceon NeuralInformationProcessingSystems.Vancouver:CurranAssociatesInc,2019:10967-10978.

[68]ANCONA M,CEOLINIE,ÖZTIRELIC,etal.Towardsbetterunderstandingofgradient-basedattribution methodsfordeepneuralnetworks[J].arXiv:1711.06104,201

连贯性(Coherence):

连 贯 性 是 为 了 比 较 XAI方 法 生成的解释是否与领域知识或共识一致。对 于 图 像 解 释,通 常将热力图或解释的位置与真实物体边界框、分割掩码或人类注意力图进行比 较 来 评 估 “位 置 一 致 性”,并使用内外相关比[69]、点定位误差[70]或定点游戏的准确度[71]等量化“基本事实”与解释之间的对应关系。例 如,Zhang等[71]使 用 定 点 游

戏的准确度评估自上而下的注意力图在视觉场景中定位目标对象的能力。

[69]NAM WJ,GURS,CHOIJ,etal.Relativeattributingpropagation:Interpretingthecomparativecontributionsofindividualunitsindeepneuralnetworks[C]∥Procee-dingsoftheAAAIConferenceonArtificialIntelligence.MenloPark:AAAI,2020:2501-2508.

[70]JAKABT,GUPTA A,BILEN H,etal.Self-supervisedlearningofinterpretablekeypointsfromunlabelledvideos[C]∥ProceedingsoftheIEEE/CVF Conferenceon Computer VisionandPattern Recognition.Washington:IEEE Computer Society,

2020:8787-8797.

[71]ZHANGJ,BARGALSA,LINZ,etal.Top-downneuralattentionbyexcitationbackprop [J].InternationalJournalofCom-

puterVision,2018,126(10):1084-1102

稳定性(Stability):稳定性用于评估原始输入样本和引入噪声的样本分别得到的解释之间的相似性,也就是说,输入加入微小 的 白 噪 声,解释也会引入可见的变化。

Alvarez-Melis等[73]通过归一化距离的方法衡量特定输入x及 邻 域ε的自解释 模 型fexpl的 稳 定 性,并使用激活最大化方法优化参数。

Chu等[74]通过Y 和Y′之间的余弦相似性衡量解释的一致性,较大的余弦相似度表示 LIME得 到 了 更好的解释一致性。

Lakkaraju等[75]通过比较原始输入和轻微扰动输入的预测评估解释的保真度,并提出解释应该对原始输入数据和稍微偏移的输入都具有高保真度,以确保解释的稳定性。

[73]ALVAREZ-MELIS D,JAAKKOLA T.Towardsrobustinterpretabilitywithself-explainingneuralnetworks [C]∥Procee-

dingsofthe32ndInternationalConferenceonNeuralInformationProcessingSystems.2018:7786-7795.

[74]CHUL,HU X,HUJ,etal.Exactandconsistentinterpretationforpiecewiselinearneuralnetworks:A closedform solution[C]∥Proceedingsofthe24thACMSIGKDDInternationalConferenceon KnowledgeDiscovery & Data Mining.2018:1244-

1253.

[75]LAKKARAJU H,ARSOV N,BASTANIO.Robustandstableblackboxexplanations[C]∥InternationalConferenceon MachineLearning.NewYork:PMLR,2020:5628-5638.

Afshar等[76]研究了胶囊网络的可解释性,提出用已训练 的胶囊网络来识别可解释的放射特征。研 究 表 明,胶 囊 网 络 从医学图像中提取的特征不仅可以区分肿瘤类型,还与手工 制作的特征有很大相关性。

Wu等[77]提 出 了 DeepMiner 框架,该框架试图可发现 DNN 中可 解 释 的 表 征,并 为 乳 腺 癌 的预测建立解释。

Wang等[78]提出用 Grad-CAM 方法解释 RAPNN 框 架,该框架可以从胸部 CT图像中学习单个图像级的特征,将模型中 RAP模块的

输出作用 于 Grad-CAM[35],实现医疗领域的决策结果透明化。

El-Sappagh等[79]开发了一个准确且可 解 释 的 阿 尔 茨海默 病(Alzheimer’sDisease,AD)诊断和进展检测模型

[76]AFSHARP,PLATANIOTISK N,MOHAMMADIA.Capsulenetworks’interpretabilityforbraintumorclassificationviara-

diomicsanalyses[C]∥2019IEEEInternationalConferenceonImageProcessing(ICIP).NewJersey:IEEE,2019:3816-3820.

[77]WUJ,ZHOU B,PECK D,etal.Deepminer:Discoveringinterpretablerepresentationsformammogramclassificationandex-planation[J].arXiv:1805.12323,2018.

[78]WANGY,FENGC,GUOC,etal.Solvingthesparsityprobleminrecommendationsviacross-domainitemembeddingbasedon co-clustering[C]∥ProceedingsoftheTwelfth ACM Interna- tionalConferenceon WebSearchandData Mining.2019:717- 725.

[79]EL-SAPPAGHS,ALONSOJM,ISLAM S,etal.A multilayer multimodaldetectionandpredictionmodelbasedonexplainable artificialintelligenceforAlzheimer’sdisease [J].Scientificre- ports,2021,11(1):1-2

Bojarski等[83]基于视觉解释方法为自动驾驶决策提供了 一种可视 化 方 法(VisualBackProp),该方法显示了哪一组输 入像 素 对 CNN 的预测贡献最大。Bojarski等[83]在 Udacity 自动驾驶汽车数据集上进行端到端的自动驾驶任务。实验表 明,VisualBackProp方法是调试 CNN 预测的有效工具。Zeng 等[84]提出了一种通过遵守交通规则学习安全驾驶车辆的架 构。

[83]BOJARSKI M,CHOROMANSKA A,CHOROMANSKI K,etal.Visualbackprop:visualizingcnnsforautonomousdriving[J].arXiv:1611.05418,2016.

本文结论

  • 现有的可解释性方法主要针对图像和文本分类任务, 如何将可解释性方法扩展到其他任务仍是未来深度学习可解 释性研究领域的主要方向之一。 (2)深度学习可解释性的目的是在解释 DNN 的 同 时,尽 可能保持模型性能和复杂度的平衡[90]。
  • 研究可解释性最重要的目的是在一些特定领域能 使用解释方法提高模型的可信度和可靠性。但 是,当 一 个 可 靠的深度学习模型提供了一个错误的视觉或文本解释时,探究错误解释的方法似乎并不存在。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值