径向分布函数

本文介绍了径向分布函数(RDF)的概念,它是分子模拟中用于研究粒子间距离分布的一种方法。RDF是球壳内粒子数密度与全局密度的比值。在C++中实现RDF的关键是计算每个球壳层上的粒子数量。文章提供了一个C++代码示例来演示这一算法的核心部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

径向分布函数

RDF实现算法

RDF是径向分布函数的Radical distribution function的缩写,指的是给定一个空间,在此空间以一个对象为中心,去寻找周围对象的的概率。对于分子模拟的径向分布函数实则也是求解粒子在周期性边界盒子的区域密度和全局密度的比值。
区域密度实则就是每一个球壳的数密度/球壳体积
全局密度实则就是盒子里面的粒子总数/盒子的体积

首先我们需要知道空间每一个粒子的坐标,即xyz坐标;然后选定盒子的几何中心为研究中心,则通过去计算已知i原子得到j原子的概率。算法核心在于如何寻找每一个球壳层的粒子数目。
C++代码演示RDF核心算法如下:

void Calculaterdf()
{//初始化参数
	int num=molecules.size() ;                         %分子数目
	double global_rho=num/a_length*b_length*c_length;  %全局密度
	double ix,iy,iz;                                   % i分子的xyz坐标
	double jx,jy,jz;                                   %j分子的xyz坐标
	double dx,dy,dz;                                   %相邻分子对的xyz差值
//遍历计算
  for(int i=0;i<num;i++)
  {
	%遍历以i分子为中心找j的分子的概率
    ix=molecules[i]->molecule_x;                      %得到i分子的x坐标      
    iy=molecules[i]->molecule_y;                  
### RDF(径向分布函数)的概念 径向分布函数(Radial Distribution Function, RDF),通常表示为 \( g(r) \),用于描述粒子间距离的概率密度分布情况。它反映了体系中任意两个粒子之间的相对位置关系,在统计力学和分子动力学模拟中有广泛应用[^1]。 具体来说,\( g(r) \) 表示在半径范围 \( r \) 到 \( r + dr \) 的球壳内找到另一个粒子的概率相对于理想气体的情况的变化程度。其定义可以写成: \[ g(r) = \frac{V}{N(N-1)} \left< \sum_{i=1}^{N} \sum_{j>i}^{N} \delta(|r_i - r_j| - r) \right> \] 其中: - \( V \) 是系统的体积, - \( N \) 是系统中的总粒子数, - \( |r_i - r_j| \) 是第 \( i \) 和第 \( j \) 颗粒间的距离, - \( \delta(x) \) 是狄拉克δ函数。 当 \( g(r) = 1 \) 时,表明该处的粒子分布与理想气体相同;如果 \( g(r) > 1 \),则意味着此处存在较高的粒子聚集概率;反之,则代表较低的粒子聚集概率。 --- ### RDF(径向分布函数)的实现方法 #### 数据准备阶段 为了计算 RDF,首先需要获取原子的位置数据。这些数据可以通过分子动力学软件(如 LAMMPS 或 GROMACS)生成的轨迹文件获得。对于 LAMMPS 软件而言,可通过 `fix` 命令输出 RDF 曲线的相关参数到指定的数据文件中[^3]。 例如,LAMMPS 中可使用以下命令来计算并导出 RDF 结果: ```bash compute rdf all rdf 50 fix 1 all ave/time 100 1 10 c_rdf[*] file data.rdf mode vector ``` 上述代码片段的作用是通过 `compute rdf` 来设置 RDF 计算的具体细节,并利用 `fix ave/time` 将结果保存至名为 `data.rdf` 的外部文件中。 #### MATLAB 实现过程 另一种方式是从 dump 文件手动提取坐标信息并通过编程工具完成 RDF 的计算工作。以下是基于 MATLAB 编写的典型流程概述[^2]: 1. **读取 Dump 文件**: 使用自定义脚本解析由 MD 模拟产生的轨迹记录; 2. **构建邻域列表**: 对于每一个时间步长内的所有颗粒,寻找它们周围的邻居集合及其对应的距离矢量; 3. **累积直方图统计**: 统计不同间隔范围内出现频率最高的那些间距值作为最终的结果之一; 4. **归一化处理**: 根据理论模型调整原始统计数据使其更加贴近实际物理意义下的形式表达出来即可绘制图形展示效果了。 下面给出一段简单的 Python 示例代码用来辅助理解整个操作逻辑: ```python import numpy as np from scipy.spatial import distance_matrix def compute_rdf(coords, box_size, nbins): dists = distance_matrix(coords, coords) # Apply periodic boundary conditions. half_box = box_size / 2 dists[dists >= half_box] -= box_size hist, edges = np.histogram(dists.flatten(), bins=nbins, range=(0, box_size)) vols = 4/3 * np.pi * ((edges[1:]**3)-(edges[:-1]**3)) rho = len(coords)/(box_size**3) gr = hist/(rho*vols*len(coords)) rs = (edges[:-1]+edges[1:])/2 return rs, gr # Example usage with random coordinates and a cubic simulation cell size of 10 units. coords = np.random.rand(100, 3)*10 # Random positions within the unit cube scaled to match our desired dimensions. rs, gr = compute_rdf(coords, 10, 100) print(rs[:10], gr[:10]) ``` 此段代码实现了基本的功能需求——即给定一组三维空间里的点位之后能够快速估算出相应的径向分布特性曲线形状特征等内容供进一步分析研究之用。 ---
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值