Uncertainty Estimation in GNN and Deep Learning(Paper Collection and Simple Notes)

通俗地说,机器学习模型的输出结果不是板上钉钉的事儿,医疗诊断需要给出病症的判断概率,对于不确定的数据和模型参数,也需要给出模型的不确定度。


不确定性估计:

  • 模型不确定性(感知不确定性,epistemic uncertainty)
    模型不确定性通常源于对收集的训练数据的不认识。感知不确定性通过多次输出的方差来决定。
    模型不确定制定在参数的分布上,通过先验分布预设模型,在给予一些训练数据后观察这个分布的变化。
    可以被消除,需要增大数据量进行训练。
    对于模型不确定性的实现比较简单:在train时使用dropout防止过拟合,而在test时使用dropout是为了采样。在test时打开dropout机制,多次forward输出预测结果,取平均得到预测值,取方差得到模型不确定度。这个过程就是Monte Carlo Dropout(有人称Test-Time Dropout或MC Dropout贝叶斯神经网络),在不需要改变神经网络结构的前提下实现模型不确定性,参考文献:Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
  • 数据不确定性(偶然不确定性,aleatoric uncertainty)
    数据不确定性通常源于数据本身的噪声,通过分析输出的分布可以评估数据不确定性。偶然不确定性是由样本特征决定的,与模型无关。
    例如:Social LSTM模型,输出是二维位置高斯分布的五个参数 ( μ 1 , μ 2 , σ 1 , σ 2 , ρ ) (μ1,μ2,σ1,σ2,ρ) (μ1,μ2,σ1,σ2,ρ),通过预测这五个参数就反映了数据不确定性。
    数据不确定性制定在输出的分布上,通过分析不同输入对应输出的方差。
    不能被消除,只可以分析。

Related Papers:

  • Bayesian Graph Convolutional Neural Networks for Semi-Supervised Classification(AAAI 2019)
    图中可能包含伪造边或有强联系的节点之间没有边,本文用贝叶斯方法将观察到的图视作参数随机图族。针对随机参数和节点标签的联合后验进行推断。

  • Confidence-based Graph Convolutional Networks for Semi-Supervised Learning(AISTATS 2019)
    原来的GCN可能会因为周围样本的分布问题导致预测出错,ConfGCN可以估计周围节点的置信度,从而分配不同的权重给中心节点,从而使图获得各向异性的属性。
    在这里插入图片描述

  • Bayesian Graph Neural Networks with Adaptive Connection Sampling(ICML 2020)
    自适应连接采样框架,简单理解为一种Dropout与DropEdge升级版+贝叶斯。
    该框架不仅缓解了深层GNNs的过平滑和过拟合的问题,而且使得GNNs在图分析任务中可以应付不确定(uncertainty)的问题。

  • UAG: Uncertainty-aware Attention Graph Neural Network for Defending Adversarial Attacks(AAAI 2021)
    解释了模型不确定性和数据不一致性。
    对于数据不确定性,本文是指图受到攻击的情况下,即同类别之间的边被删除,而不同类别之间的边被建立,那么就更容易被误判。所以研究节点k跳的类别多样性非常重要。

  • Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
    本文提出了一种新的理论框架,将深度神经网络中的dropout训练作为深度高斯过程中的近似贝叶斯推理。这个理论的一个直接结果是给我们提供了用dropout nn建模不确定性的工具。预测时打开dropout,进行多次forward输出结果,均值为预测值,方差为不确定度。

  • What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?(NIPS 2017)
    这篇的作者Yarin Gal和Dropout as a Bayesian Approximation是同一个。本文对模型和数据的不确定性都进行了分析。
    本文对模型不确定性的建模就是用到的Dropout as a Bayesian Approximation方法,即预测时打开dropout,进行多次forward输出结果,均值为预测值,方差为不确定度。
    论文解读:贝叶斯神经网络建模两类不确定性——NIPS2017

  • Probabilistic Graph Neural Networks for Traffic Signal Control
    概率图神经网络,概率注意力模型。能对交通条件的不确定性进行建模,并学习后验分布的变分推理。
    Uncertainty用到的方法就是VGRNN。

  • Variational Graph Recurrent Neural Networks(NIPS 2019)
    变分图递归神经网络(VGRNN),引入额外的随机变量,共同捕获动态图中的拓扑和节点属性变化,以及节点潜在表示的不确定性。
    在这里插入图片描述

  • Certified Robustness of Graph Neural Networks against Adversarial Structural Perturbation(KDD '21)
    对抗图结构的扰动和攻击,比如在图中删除或添加边,导致预测出错。本文提出的随机平滑技术针对这个问题来增强GNN的图结构扰动鲁棒性。

  • Uncertain Graph Neural Networks for Facial Action Unit Detection(AAAI 2021)
    用ResNet生成AU特征,当然这个和uncertainty无关。
    本文提出的UGN模型,针对节点有noise的情况下,捕获节点间的关系和不确定性的概率。
    方法就是引入一个随机变量捕获不确定性,用输出的均值捕获节点间的重要度,方差捕获输入数据的不确定性。
    在这里插入图片描述

  • NODE-SELECT:A Graph Neural Network Based On A Selective Propagation Technique
    分层的节点选择算法,抑制聚合过程中节点噪声的传播。
    本文在节点选择部分,对特征进行线性变换,在节点选择时要丢弃的是有特征信息遗漏的节点。
    看了看审稿人意见:reject 推导的可读性不高,并且当设置概率阈值T为0时就相当于GAT的自注意力。
    在这里插入图片描述

  • Gaussian Belief Propagation 高斯置信度传播算法
    发现这篇挺有趣:A visual introduction to Gaussian Belief Propagation
    在这里插入图片描述

  • Robust Graph Convolutional Networks Against Adversarial Attacks(KDD '19)
    这篇挺有意思,把节点表征为高斯分布的形式,不管在GCN中怎么聚合,下一层的节点仍然是高斯分布。那么怎么对抗攻击?参考计算出来的方差,方差越大,表示其不确定性越大,则在聚合时分配较少的权重。
    本质上就是换了一种节点embedding表达方式。

label noise相关:

  • Towards Robust Graph Neural Networks against Label Noise
    利用标签传播和元学习方法,基于图结构的标签平滑性(相邻节点往往具有相同标签),利用标签传播算法从每个节点的相邻节点中计算出一个伪标签,然后利用元学习来学习原始标签和伪标签的适当聚合作为最终标签。

参考链接(这些博客真心写得很好):

label noise相关:

Graph-Adversarial-Learning汇总:

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.zwX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值