Harris角点检测:
void cornerHarris(InputArray src, OutputArray dst, int blockSize, int ksize, double k, int borderType=BORDER_DEFAULT)
参数详解:
src image输入图像。
dst harris_responce 存储哈里斯(Harris)检测responces的图像。与输入图像等大。
block_size 邻域大小(见关于cvCornerEigenValsAndVecs的讨论)。
aperture_size 扩展 Sobel 核的大小(见 cvSobel)。格式. 当输入图像是浮点数格式时,该参数表示用来计算差分固定的浮点滤波器的个数。
k harris 检测器的自由参数。参见下面的公式。
函数 cvCornerHarris 对输入图像进行 Harris 边界检测。类似于 cvCornerMinEigenVal 和 cvCornerEigenValsAndVecs。对每个像素,在 block_size*block_size 大小的邻域上,计算其2*2梯度共变矩阵(或相关异变矩阵)M。然后,将
det(M) - k*trace(M)2 (这里2是平方)
保存到输出图像中。输入图像中的角点在输出图像中由局部最大值表示
代码:
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat image = imread("D:/house.jpg", 0);
namedWindow("original image");
imshow("original image", image);
Mat cornerStrenth;
cornerHarris(image, cornerStrenth, 3, 3, 0.01);
Mat harrisCorner;
double threshold = 0.0001;
cv::threshold(cornerStrenth, harrisCorner,
threshold, 255, THRESH_BINARY);//前面定义了一个threshold,这个threshold函数需要加上cv空间名限制
namedWindow("corner");
imshow("corner", harrisCorner);
waitKey(0);
return 0;
}