第五章,向量空间,3-内积、长度、夹角和距离

第五章,向量空间,3-内积、长度、夹角和距离


玩转线性代数(28)长度、夹角和距离的笔记,相关证明以及例子见原文

内积

定义

设有n维向量
x = ( x 1 x 2 ⋮ x n ) , y = ( y 1 y 2 ⋮ y n ) x=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, y=\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} x= x1x2xn ,y= y1y2yn
[ x , y ] = x 1 y 1 + x 2 y 2 + ⋯ + x n y n [x, y]=x_1y_1+x_2y_2+\cdots+x_ny_n [x,y]=x1y1+x2y2++xnyn,
[ x , y ] [x,y] [x,y]为向量x与y的内积
按矩阵的运算可表示为
[ x , y ] = x T y = ( x 1 , x 2 , ⋯   , x n ) ( y 1 y 2 ⋮ y n ) [x, y]=x^Ty=(x_1,x_2,\cdots,x_n)\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} [x,y]=xTy=(x1,x2,,xn) y1y2yn

内积的运算性质

(其中 x , y , z x,y,z x,y,z为n维向量, λ ∈ R \lambda \in R λR
(1) [ x , y ] = [ y , x ] [x,y]=[y,x] [x,y]=[y,x]
(2) [ λ x , y ] = λ [ x , y ] [\lambda x,y]=\lambda[x,y] [λx,y]=λ[x,y]
(3) [ x + y , z ] = [ x , z ] + [ y , z ] [x+y,z]=[x,z]+[y,z] [x+y,z]=[x,z]+[y,z]
(4) [ x , x ] ≥ 0 [x,x]\ge 0 [x,x]0;当且仅当 x = 0 x=0 x=0时, [ x , x ] = 0 [x,x]=0 [x,x]=0

内积空间

一个定义了内积的向量空间称为内积空间
不同类型的向量空间内积的定义方法不同,但都要满足上述四条性质

长度

∣ ∣ x ∣ ∣ = [ x , x ] = x 1 2 + x 2 2 + ⋯ + x n 2 ||x||=\sqrt{[x,x]}=\sqrt{x_1^2+x_2^2+\cdots+x_n^2} ∣∣x∣∣=[x,x] =x12+x22++xn2 ,
∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣为n维向量的长度(或范数)

性质

向量的长度具有如下性质:
(1)非负性: ∣ ∣ x ∣ ∣ ≥ 0 ||x||\ge0 ∣∣x∣∣0;当且仅当x=0时, ∣ ∣ x ∣ ∣ = 0 ||x||=0 ∣∣x∣∣=0
(2)齐次性: ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ∣ ∣ x ∣ ∣ ||\lambda x||=|\lambda|||x|| ∣∣λx∣∣=λ∣∣∣x∣∣
(3)三角不等式: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\le ||x||+||y|| ∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣
(4)对任意n维向量x,y,有 x T y = [ x , y ] ≤ ∣ ∣ x ∣ ∣ ⋅ ∣ ∣ y ∣ ∣ x^Ty=[x,y]\le ||x|| \cdot||y|| xTy=[x,y]∣∣x∣∣∣∣y∣∣,或 [ x , y ] 2 ≤ [ x , x ] [ y , y ] [x,y]^2\le [x,x][y,y] [x,y]2[x,x][y,y]
注:若令 x T = ( x 1 , x 2 , ⋯   , x n ) , y T = ( y 1 , y 2 , ⋯   , y n ) x^T=(x_1,x_2,\cdots,x_n),y^T=(y_1,y_2,\cdots,y_n) xT=(x1,x2,,xn),yT=(y1,y2,,yn),则性质4可表示为
∣ ∑ i = 1 n x i y i ∣ ≤ ∑ i = 1 n x i 2 ⋅ ∑ i = 1 n y i 2 |\sum_{i=1}^nx_iy_i|\le \sqrt{\sum_{i=1}^nx_i^2} \cdot \sqrt{\sum_{i=1}^ny_i^2} i=1nxiyii=1nxi2 i=1nyi2
上述不等式称为施瓦茨不等式,它说明了 R n R^n Rn中任意两个向量的内积与它们长度之间的关系

单位向量及单位化

单位向量:当 ∣ ∣ x ∣ ∣ = 1 ||x||=1 ∣∣x∣∣=1时,称x为单位向量。
向量单位化:对 R n R^n Rn中任一非零向量 α \alpha α,向量 α ∥ α ∥ \frac{\alpha}{\|\alpha\|} αα是一个单位向量,因为
∥ α ∥ α ∥ ∥ = 1 ∥ α ∥ ∥ α ∥ = 1 \| \frac{\alpha}{\|\alpha\|} \|=\frac{1}{\|\alpha\|} \|\alpha\|=1 αα=α1α=1
用非零向量 α \alpha α的长度去除向量 α \alpha α,得到一个非零向量,这一过程通常称为向量 α \alpha α的单位化

夹角

∥ α ∥ ≠ 0 , ∥ β ∥ ≠ 0 \|\alpha\| \ne 0, \|\beta\| \ne 0 α=0,β=0,定义
θ = a r c c o s [ α , β ] ∥ α ∥ ∥ β ∥ ( 0 ≤ θ ≤ π ) \theta=arccos \frac{[\alpha,\beta]}{\|\alpha\|\|\beta\|} (0\le \theta \le \pi) θ=arccosα∥∥β[α,β](0θπ)
θ \theta θ为向量 α \alpha α β \beta β的夹角

距离

R n R^n Rn空间中的两个向量u和v之间的距离用dist(u,v)来表示,计算公式为
d i s t ( u , v ) = ∥ u − v ∥ = ( u 1 − v 1 ) 2 + ( u 2 − v 2 ) 2 + ⋯ + ( u n − v n ) 2 dist(u,v)=\|u-v\|=\sqrt{(u_1-v_1)^2+(u_2-v_2)^2+\cdots+(u_n-v_n)^2} dist(u,v)=uv=(u1v1)2+(u2v2)2++(unvn)2

向量的加法、内积叉积是线性代数中描述向量几何属性物理意义的重要运算。理解这些运算的几何直观,对于掌握线性代数解决实际问题至关重要。 参考资源链接:[线性代数几何意义探索:从向量到行列式](https://wenku.csdn.net/doc/6cks6bdyw8) 向量加法可以直观地通过头尾法则来理解,即将两个向量的尾部对齐,从第一个向量的尾部指向第二个向量的头部,得到新的向量。这种运算在物理中表示力的合成,例如计算两个力的作用效果。 内积(点积)可以几何直观地理解为一个向量在另一个向量方向上的投影长度另一个向量长度的乘积,结果是一个标量。内积可以用来求解两个向量之间的夹角,也可以表示两个向量的功率或工率,在物理中,内积常用于计算两个力作用下的功率。 叉积(向量积)则是一个向量另一个向量的垂直乘积,结果是一个新向量,其方向垂直于原来两个向量构成的平面,大小等于这两个向量构成的平行四边形的面积。在几何中,叉积的方向遵循右手定则,可以用来判断两个向量的相对方向。在物理中,叉积用于计算两个力的矩。 为了深入理解这些概念,《线性代数的几何意义1-5》提供了丰富的几何图像实例,帮助读者建立直观理解,并在几何物理问题中应用这些知识。通过阅读这本书,读者可以更有效地掌握向量运算的几何直观,并能够将这些概念应用于解决实际问题。 参考资源链接:[线性代数几何意义探索:从向量到行列式](https://wenku.csdn.net/doc/6cks6bdyw8)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值