矩阵乘法的四种理解方式

先介绍向量的两种运算,一个行向量乘以一个列向量称作向量的内积,又叫作点积,结果是一个数;

一个列向量乘以一个行向量称作向量的外积,外积是一种特殊的克罗内克积,结果是一个矩阵,

假设和b分别是一个行向量和一个列向量,那么内积、外积分别记作,为了讨论方便,假设每个向量的长度为2,内积和外积如下所示:


定义了内积和外积以后,我们讨论矩阵的乘法。矩阵是由向量组成的,因此对矩阵不同角度的抽象,将矩阵乘法转换为向量乘法,可以使我们从不同的角度去理解矩阵的乘法。对于一个矩阵A(假设行和列的大小都是2),我们既可以把它看作由两个行向量组成的列向量,,又可以看作是由两个列向量组成的行量,我们表示列向量,表示行向量,这样矩阵A和矩阵B的乘积按照不同的角度就可以组成四种理解方式。

一、 A是由行向量组成的列向量,B是由列向量组成的行向量

此时AB乘积变为了两个新的向量的外积形式,按照外积定义,我们有

注意到这里面每一个都是一个向量,因此就是一个内积,计算结果就是AB矩阵第i行第j列中的元素。因此,我们可以看到,矩阵乘积是两个向量的外积,并且外积矩阵中的每一个元素是一个内积,这是最直接的理解方式。

二、 A和B都是由列向量组成的行向量


令C = AB, 我们考虑C的每一个列向量:


同理:

因此,矩阵C的每一个列向量,是A的列向量的一个线性组合,该线性组合中的系数是的各个元素。从这个角度说C的每一列都存在于A的列向量空间内。

三、 A是由行向量组成的列向量,B也是由行向量组成的列向量


类似于上面的情况,不过我们现在考虑C的每一个行向量:


同理:


因此,矩阵C的每一个行向量,是B的行向量的一个线性组合,该线性组合中的系数是的各个元素。从这个角度说C的每一个行向量都存在于B的行向量空间内。

四、 A是由列向量组成的行向量,B也是由行向量组成的列向量


此时AB乘积变为了两个新的向量的内积形式。按照内积定义我们有:


注意到是一个外积形式,因为是一个列向量,是一个行向量,因此C是由各个外积矩阵相加得到的。


根据以上分析,我们可以将第一种和第四种方式放到一起,第二种和第三种放到一起分别进行理解。第一种方式先将A抽象为列向量,将B抽象为行向量,从而将矩阵乘法变为了一种外积的形式,而外积矩阵中的每一个元素是一个行向量和一个列向量的内积。这种方式每次得到C的一个元素

第四种理解方式先将A抽象为行向量,将B抽象为列向量,从而将矩阵乘法变为了一种内积形式,内积的各个组成部分又是一个外积。这种方式每次不是得到C的一个元素,而是将C看作是多个矩阵相加组成的,每次计算得到一个加数矩阵。

第二种方式将矩阵A、B都抽象为行向量,行向量的每个组成是一个列向量,A乘以B的每一个列向量得到一个新的列向量,并且该列向量存在于A的列向量空间内,A乘以B相当于是对A进行了列变换。第三种方式则将A乘以B看作是对B进行了行变换。

如果想对一个矩阵进行行变换,可以左乘一个矩阵;相应的如果想对矩阵进行列变换,可以右乘一个矩阵。这种思想被应用到高斯消元的过程中。


最后我们总结一下矩阵C(C=AB)到底是什么,C是一个矩阵,是一个多面孔的矩阵。它既是列向量组成的行向量,每个列向量是A的列空间的线性组合,又是行向量组成的列向量,每个行向量是B的行空间的线性组合;它是一个内积,内积的每个成分是一个外积,同时它又是一个外积,外积矩阵的每一个元素是一个内积。



参考资料:

[1] http://videolectures.net/mit1806s05_strang_lec06/

[2] Introduction to Linear Algebra;  Gilbert Strang




http://blog.sciencenet.cn/blog-520608-685388.html    此文来自科学网李建扣博客,转载请注明出处。  
  • 9
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 1. 直接列出九九乘法表,例如: 1x1=1 1x2=2 1x3=3 ... 1x9=9 2x1=2 2x2=4 2x3=6 ... 2x9=18 3x1=3 3x2=6 3x3=9 ... 3x9=27 ... 9x1=9 9x2=18 9x3=27 ... 9x9=81 2. 以每个数字为基准,列出其对应的乘数和积,例如: 1的乘法表: 1x1=1 2的乘法表: 2x1=2 2x2=4 2x3=6 ... 2x9=18 3的乘法表: 3x1=3 3x2=6 3x3=9 ... 3x9=27 以此类推。 3. 以每个乘数为基准,列出其对应的数字和积,例如: 1的乘法表: 1x1=1 2x1=2 3x1=3 ... 9x1=9 2的乘法表: 1x2=2 2x2=4 3x2=6 ... 9x2=18 3的乘法表: 1x3=3 2x3=6 3x3=9 ... 9x3=27 以此类推。 4. 以乘积为基准,列出其对应的乘数组合,例如: 1的乘法表: 只有1x1=1一种组合。 2的乘法表: 1x2=2 2x1=2 3的乘法表: 1x3=3 3x1=3 ... 2x3=6 3x2=6 以此类推。 ### 回答2: 九九乘法表是学习数学时非常重要的内容之一,也是我们常常接触的。九九乘法表可以用多种方法进行表述,下面我将介绍四种常见的方法。 第一种方法是直接列举法。这种方法非常简单直观,我们按照九九乘法表的格式,从1乘1一直到9乘9逐个列出,并计算出结果。这种方法适合初学者理解和记忆,但是对于大量的计算可能会比较繁琐。 第二种方法是分行列写法。这种方法是把乘法表分成九行和九列,每一行代表一个被乘数,每一列代表一个乘数。然后将对应的乘积填入相应的格子中。这种方法可以方便地找到某个数字的位置,并且适合进行计算。 第三种方法是规律法。九九乘法表有一定的规律,我们可以利用这个规律进行计算。例如,a乘b等于b乘a,同时,a乘b的结果等于a与b之和的乘积。利用这些规律,我们可以更快地计算出乘法表中的乘积。 第四种方法是数形结合法。这种方法将九九乘法表用图形的形式展示出来,例如利用正方形格子的方式,分别用纵横坐标代表乘数和被乘数,并且将计算出的结果填入相应的格子中。这种方法通过图形的形式展示出乘法表的结构,使得学习更加直观。 以上就是九九乘法表的四种表述方法。不同的方法适用于不同的情境,我们可以根据自己的需要选择相应的方法,来更好地学习和理解九九乘法表。 ### 回答3: 九九乘法表是指从1乘以1开始,到9乘以9结束的乘法表。它包含了从1到9的数字相互相乘的结果。九九乘法表的四种表述方法如下: 1. 自然顺序表述法: 九九乘法表的自然顺序表述法是按照数字的自然顺序列出乘法表。即先从1乘以1开始,逐行逐列地计算乘法结果,直到9乘以9。例如: 1x1=1 1x2=2 2x2=4 1x3=3 2x3=6 3x3=9 ... 1x9=9 2x9=18 ... 9x9=81 2. 竖式表述法: 九九乘法表的竖式表述法是按照竖式的形式来展示乘法表。即按照乘法的计算步骤,一列一列地计算乘法结果,直到乘法表的最后一列。例如: 1x1=1 1x2=2 1x3=3 ... 1x9=9 2x1=2 2x2=4 2x3=6 ... 2x9=18 ... 9x1=9 9x2=18 ... 9x9=81 3. 矩阵表述法: 九九乘法表的矩阵表述法可以用矩阵的形式来表示。即将九九乘法表每个乘法结果对应的位置填入矩阵的相应位置。例如: 1 2 3 ... 9 2 4 6 ... 18 ... 9 18 ... 81 4. 两两对应表述法: 九九乘法表的两两对应表述法是将每个数字和其对应的乘法结果成对列出来。即将每个数字和乘法结果进行两两对应,形成乘法表。例如: 1和1x1=1,2和1x2=2,3和1x3=3,...,9和1x9=9 2和2x1=2,4和2x2=4,6和2x3=6,...,18和2x9=18 ... 9和9x1=9,18和9x2=18,...,81和9x9=81 以上四种表述方法是九九乘法表常用的表达方式,可以根据实际需要选择其中一种或多种来展示九九乘法表。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值