torchvision中Transform的normalize参数含义

比如原来的tensor是三个维度的,值在0到1之间,经过以下变换之后就到了-1到1区间。

transforms.Normalize((.5,.5,.5),(.5,.5,.5))

transforms的源码中解释:

input[channel] = (input[channel] - mean[channel]) / std[channel]

假设你数据的范围是图片的数据范围四[0,1],那么如果mean = [.5, .5, .5],std = [.5, .5, .5],根据上述式子计算
(0−0.5)/0.5=−1 (0-0.5)/0.5= -1(0−0.5)/0.5=−1 ,(1−0.5)/0.5=1 (1-0.5)/0.5= 1(1−0.5)/0.5=1就可将数据归一化到[-1,1]。

疑问

在pytorch的官方教程里,经常看到

normalize = T.Normalize(mean = [0.485, 0.456, 0.406], 
                         std = [0.229, 0.224, 0.225])

图片的RGB的范围不是[0,255]吗,那么图片的3个通道的像素值不应该是[0,255]吗?那么用这样的归一化参数怎么能归一化到[-1,1]呢?

解答

第一种情况:就是在加载数据集的时候就已经将图片转换为[0, 1],例如imageNet数据集就是在加载ImageNet的数据的时候就转换成[0,1]。
第二种情况:
应用了torchvision.transforms.ToTensor,其作用是
( Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] )

所以我们常常在代码中看到normallize在ToTensor之后

self.transforms = T.Compose([
                   T.Scale(224),
                   T.CenterCrop(224),
                   T.ToTensor(),
                   normalize
               ]
©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值