【Quant】BigQuant学习笔记(1) 可视化策略

设置投资目标

点击编写策略->新建选择可视化AI策略,进入如下界面
UI选择自动标注股票模块,设置投资目标,假设我们的投资目标为未来7天收益率最高,股票持仓时间为3天,则在标注模块中修改计算收益代码

# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -7) / shift(open, -1)

在回测模块中修改持仓天数和每支股票可占用资金比例,这里设置为30%

# 回测引擎:初始化函数,只执行一次
def bigquant_run(context):
    # 加载预测数据
    context.ranker_prediction = context.options['data'].read_df()

    # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
    context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
    # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
    stock_count = 5
    # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
    context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
    # 设置每只股票占用的最大资金比例
    context.max_cash_per_instrument = 0.3
    context.options['hold_days'] = 3

策略运行

1.运行自动标注模块, 需要等待一段时间,提示充会员(QAQ)
time得到股票的rank序列(在label)中,当label的值越大表示该股票越值得持有
在这里插入图片描述

2.设置策略训练时间区间为2010年至2014年,在代码列表(v1)中设置;测试时间区间为2015年整年,在代码列表(v2)中设置即可

参考资料

AI策略构建

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值