从本文开始,按照AI策略开发的完整流程(共七步),上手在BigQuant平台上快速构建AI策略。本文首先介绍如何使用证券代码模块指定股票范围和数据起止日期。重要的事情说三遍:模块的输入端口有提示需要连线的上游数据类型,两个模块之间的接口不能随意连接,否则会报错!
如下图所示,训练集和预测集数据的构建需要首先通过代码列表模块指定数据起止时间和标的范围。
一、设置数据集
新建策略
第一步:新建空白可视化AI策略。
添加模块
第二步:添加模块:在模块列表的 数据输入输出 下找到 代码列表 模块并拖入画布。
模块参数设置
第三步:选中模块,在右侧属性栏中可修改参数。
-
开始时间:训练集的开始时间设置,格式“yyyy-mm-dd”。
-
结束时间:训练集的结束时间设置,格式“yyyy-mm-dd”。
-
交易市场:目前支持种类有
-
CN_STOCK_A – A股
-
CN_FUND – 场内基金
-
CN_FUTURE – 期货
-
如图所示,我们设置训练集数据时间范围是2013-01-01日至2016-12-31日,股票范围为A股所有股票
测试集的模块设置与训练集类似,只需要将“开始时间”和“结束时间”设置为“2017-01-01”和“2018-12-31”即可。
如果我们想指定一个股票池训练或预测,那么只要在股票代码列表中加入相应的股票代码即可,如下图所示:
小结:至此,完成了训练集和预测集数据的起止时间和股票范围设置,接下来会进行目标确定、数据标注部分。
二、数据标注
在上文已经完成了训练集和预测集数据范围的设置。接下来在第二步中,学习如何使用数据标注模块来设置训练目标。
数据标注是有监督学习算法的关键,标注是否能够准确描述问题的目标直接影响模型的有效性。
添加模块
第一步:在模块列表的数据标注下找到自动标注(股票)模块,并拖入画布中。