跳蛛优化算法(Jumping Spider Optimization Algorithm, JSOA)


一、理论基础

跳蛛优化算法(Jumping Spider Optimization Algorithm, JSOA) 是由Peraza-Vázquez, H.等人于2021年提出的,该作者还提出了澳洲野狗优化算法(Dingo Optimization Algorithm, DOA))和黑寡妇优化算法(Black Widow Optimization Algorithm, BWOA)。JSOA对跳蛛逼迫、搜索和扑向猎物的捕食策略建立了数学模型。该算法在20个测试函数、4个实际优化问题、比例积分导数(PID)控制器的调谐和选择性谐波消除问题上进行了基准测试。

跳蛛科跳蛛
在这里插入图片描述

1、数学模型

该算法主要对跳珠不同的捕食策略进行数学模型化,包括逼迫攻击、搜索和跳向猎物。此外,还建立了一个表示信息素率的模型。

1.1 策略一:逼迫

当蜘蛛不在可以跳跃抓住猎物的距离内时,它会通过做一些隐蔽的动作靠近猎物,直到它到达一个可以跳跃抓住猎物的距离。逼迫策略可以用匀加速直线运动来表示,速度线性增加或减少。
在这里插入图片描述
假设时间为1,初始速度为0,重新定义位置更新公式:
在这里插入图片描述
其中, x x xr为当前个体之外的随机个体。
在这里插入图片描述

1.2 策略二:扑向猎物

跳蛛尾随猎物并扑向它。扑向猎物的捕食策略可以表示为抛物线运动,特点为X轴方向为匀速运动,Y轴方向为匀加速运动,可以得到:
在这里插入图片描述
在这里插入图片描述
类似策略一,将时间设为1,可以得到轨迹方程:
在这里插入图片描述
最终位置更新公式为:
在这里插入图片描述
其中, V V V0设为100 mm/sec, g g g设为9.80665 m/s2
在这里插入图片描述

1.3 策略三:搜索猎物

跳蛛在周围环境中进行随机搜索以定位猎物。在该策略中,提出了两个数学函数进行局部和全局搜索。
局部搜索:
在这里插入图片描述
其中, w a l k walk walk为-2到2之间的伪随机数, ε ε ε为0到1的正态分布伪随机数。
全局搜索:
在这里插入图片描述
其中, λ λ λ为Cauchy随机数( μ μ μ为0, θ θ θ为1)。

在这里插入图片描述

1.4 策略四:跳蛛的信息素率

信息素是一种由个体产生并分泌到外界的化学物质,它被同一物种的其他个体感知到,并引起行为改变。数学模型取自BWOA,根据适应度大小进行归一化。
在这里插入图片描述
根据信息素大小确定是否进行位置更新,小于等于0.3则:
在这里插入图片描述
其中, x x xr1 x x xr2为两个不同个体, σ σ σ为0或1。

2、算法伪代码

伪代码包括两部分,算法1是关于信息素的,算法2为JSOA的。
在这里插入图片描述
在这里插入图片描述


二、总结

  1. 该算法与BWOA存在相近之处,可以对比研究;
  2. 从算法结构上看,也比较简单,不难理解;
  3. 算法改进方面,也不难改进。

参考文献

【1】Peraza-Vázquez, H., Peña-Delgado, A., Ranjan, P., Barde, C., Choubey, A., & Morales-Cepeda, A. B. (2021). A Bio-Inspired Method for Mathematical Optimization Inspired by Arachnida Salticidade. Mathematics, 10(1), 102. MDPI AG. Retrieved from https://doi.org/10.3390%2Fmath10010102.

  • 关于 JSOA 代码下载,参考 Code
  • 关于 JSOA 论文网站,参考 Paper
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值