最近我们被客户要求撰写关于马尔可夫链的研究报告,包括一些图形和统计输出。赌徒的破产问题是指玩家有获胜的概率p和失败的概率q。例如,让我们来看看一个技能游戏,玩家X可以通过接近目标,以0.6的概率击败玩家Y。游戏开始时,玩家X被分配到5分,玩家Y被分配到10分。每轮游戏后,玩家的积分要么减少一个,要么增加一个,我们可以确定玩家X将赢过玩家Y的概率。这类问题的应用范围很广。
相关视频:马尔可夫链原理可视化解释与R语言区制转换Markov regime switching实例
马尔可夫链原理可视化解释与R语言区制转换Markov regime switching实例
,时长07:25
相关视频
马尔可夫链蒙特卡罗方法MCMC原理与R语言实现
,时长08:47
这实际上是一个相当简单的问题,可以用纸笔解决,并确定一个确切的概率。不需要太多细节,我们可以通过来确定破产的概率.这个例子中结果是
.
但这是一个相对枯燥的方法,编写一个R脚本会让一切变得更好。因此,这里是对同一问题的模拟,估计了同样的概率,而且还提供了关于这个游戏要玩多少次的分布的额外信息。
genin = function(n, xnt, y.t, x.p){
x.rnd = rbinom(n, 1, p=x.p)
x.u.m = cumsum(x.n)+x.cnt
rusim = replicate(nres, ge.(n=1000, xcn=5, .nt=10, xp=.6))
hist
x.anniln = apply(ri.sim==15, 2, which.max)
plot(mansate)