Spring AI教程(十五):处理结构化输出与自定义AI模型
在前面的文章中,我们讨论了Prompt模板、嵌入技术和Token管理。这篇文章将探讨如何处理AI模型的结构化输出,以及如何将自定义数据引入到AI模型中。
结构化输出(Structured Output)
传统上,AI模型的输出通常以java.lang.String
形式返回,即使请求输出为JSON,它也只是一个字符串。这种复杂性导致了一个专门领域的出现,即创建Prompts以生成预期输出,然后将简单字符串转换为可用的数据结构以供应用程序集成。
结构化输出转换
结构化输出转换需要精心设计的Prompts,通常需要与模型进行多次交互才能实现所需的格式。Spring AI项目提供了支持结构化输出转换的工具,帮助开发者更好地处理这种情况。
示例:处理结构化输出
以下是一个处理结构化输出的示例:
- 创建结构化输出服务
创建一个服务类,用于处理结构化输出:
import org.springframework.stereotype.Service;
import com.example.springai.OpenAiStructuredOutputService;
@Service
public class StructuredOutputService {
private final OpenAiStructuredOutputService structuredOutputService;
public StructuredOutputService(OpenAiStructuredOutputService structuredOutputService) {
this.structuredOutputService = structuredOutputService;
}
public <T> T getStructuredOutput(String prompt, Class<T> responseType) {
String jsonResponse = structuredOutputService.getStructuredOutput(prompt);
return convertJsonToObject(jsonResponse, responseType);
}
private <T> T convertJsonToObject(String jsonResponse, Class<T> responseType) {
// 使用JSON库将JSON字符串转换为Java对象
ObjectMapper objectMapper = new ObjectMapper();
try {
return objectMapper.readValue(jsonResponse, responseType);
} catch (IOException e) {
throw new RuntimeException("Failed to convert JSON to Object", e);
}
}
}
- 使用结构化输出服务
创建一个控制器,使用结构化输出服务生成结构化数据:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class StructuredOutputController {
@Autowired
private StructuredOutputService structuredOutputService;
@GetMapping("/get-structured-output")
public <T> T getStructuredOutput(@RequestParam String prompt, @RequestParam Class<T> responseType) {
return structuredOutputService.getStructuredOutput(prompt, responseType);
}
}
自定义AI模型
如何将未训练的数据引入到AI模型中?这对于许多实际应用来说是一个关键问题。GPT-3.5/4.0的数据集仅涵盖到2021年9月,因此模型无法回答需要该日期之后知识的问题。以下是三种自定义AI模型以包含新数据的技术:
1. 微调(Fine Tuning)
微调是一种传统的机器学习技术,通过调整模型的内部权重来定制模型。然而,这对于GPT等大型模型来说非常困难且资源密集。
2. Prompt填充(Prompt Stuffing)
Prompt填充是一种更实际的替代方案,即在Prompt中添加尽可能多的上下文信息以供模型参考。虽然这种方法简单,但在处理大数据量时可能会遇到Token限制。
3. 检索增强生成(Retrieval-Augmented Generation, RAG)
RAG模式结合了信息检索和生成模型。首先,系统从一个知识库中检索相关信息,然后将这些信息与用户的Prompt一起传递给生成模型。这种方法既能利用最新的信息,又能保持生成模型的灵活性。
示例:检索增强生成
以下是一个RAG模式的实现示例:
- 创建检索服务
创建一个服务类,用于从知识库中检索信息:
import org.springframework.stereotype.Service;
import com.example.springai.KnowledgeBaseService;
@Service
public class RetrievalService {
private final KnowledgeBaseService knowledgeBaseService;
public RetrievalService(KnowledgeBaseService knowledgeBaseService) {
this.knowledgeBaseService = knowledgeBaseService;
}
public String retrieveRelevantInformation(String query) {
return knowledgeBaseService.search(query);
}
}
- 创建生成服务
创建一个服务类,用于将检索到的信息与用户的Prompt结合,并传递给生成模型:
import org.springframework.stereotype.Service;
import com.example.springai.OpenAiChatService;
@Service
public class RagService {
private final RetrievalService retrievalService;
private final OpenAiChatService openAiChatService;
public RagService(RetrievalService retrievalService, OpenAiChatService openAiChatService) {
this.retrievalService = retrievalService;
this.openAiChatService = openAiChatService;
}
public String generateResponse(String userPrompt) {
String retrievedInformation = retrievalService.retrieveRelevantInformation(userPrompt);
String combinedPrompt = userPrompt + " 相关信息:" + retrievedInformation;
return openAiChatService.chat(combinedPrompt);
}
}
- 使用RAG服务
创建一个控制器,使用RAG服务生成响应:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class RagController {
@Autowired
private RagService ragService;
@GetMapping("/generate-rag-response")
public String generateRagResponse(@RequestParam String prompt) {
return ragService.generateResponse(prompt);
}
}
结论
通过理解结构化输出和自定义AI模型的技术,Spring AI能够处理更复杂的任务和更大规模的数据。希望这篇文章能帮助你在实际项目中应用这些技术,并激发你更多的创意。
下一篇文章中,我们将继续探讨更多实际应用场景和高级功能,帮助你进一步掌握这一强大的工具。