MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 技术背景:MMAudio 基于多模态联合训练,支持视频和文本输入,生成高质量音频。
  2. 主要功能:包括视频到音频合成、文本到音频合成,以及多模态联合训练。
  3. 应用场景:适用于影视制作、游戏开发、虚拟现实等领域,提升音频合成的效率和质量。

正文(附运行示例)

MMAudio 是什么

公众号: 蚝油菜花 - MMAudio

MMAudio 是一种先进的视频到音频合成技术,基于多模态联合训练,能够在广泛的视听和音频文本数据集上进行训练。其核心技术是同步模块,确保生成的音频与视频帧精确匹配,实现高度同步。

MMAudio 不仅适用于影视制作和游戏开发,还可以根据视频内容或文本描述生成相应的音频,极大地提升了用户体验。

MMAudio 的主要功能

  • 视频到音频合成:根据视频内容生成相应的音频,确保视频和音频同步。
  • 文本到音频合成:根据文本描述生成匹配的音频,适用于不需要视频素材的场景。
  • 多模态联合训练:支持在包含音频、视频和文本的数据集上进行训练,提升模型对不同模态数据的理解和生成能力。
  • 同步模块:确保生成的音频与视频帧或文本描述精确对齐。

MMAudio 的技术原理

  • 深度学习:基于深度学习技术,特别是神经网络,理解和生成音频数据。
  • 多模态输入处理:模型能够处理视频和文本输入,通过深度学习网络提取特征,进行音频合成。
  • 联合训练:模型在训练时考虑音频、视频和文本数据,使生成的音频能够与视频和文本内容相匹配。
  • 同步机制:通过同步模块,确保音频输出与视频帧或文本描述的时间轴完全对应,实现同步。
  • 数据集适配:MMAudio 能够在多种数据集上进行训练,包括音频-视频和音频-文本数据集,增强模型的泛化能力。

如何运行 MMAudio

安装 MMAudio

  1. 安装依赖
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --upgrade
conda install -c conda-forge 'ffmpeg<7'
  1. 克隆仓库
git clone https://github.com/hkchengrex/MMAudio.git
cd MMAudio
pip install -e .

运行示例

命令行接口

使用 demo.py 进行视频到音频合成:

python demo.py --duration=8 --video=<path to video> --prompt "your prompt"

输出将以 .flac.mp4 格式保存在 ./output 目录下。

Gradio 接口

使用 Gradio 进行视频到音频和文本到音频合成:

python gradio_demo.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值