SPAR3D:一张图片就能生成3D模型,每个物体的重建时间仅需0.7秒!

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:SPAR3D 能从单张图像中高效重建出高质量的3D网格模型,支持用户交互式编辑。
  2. 技术:基于两阶段设计,结合点扩散模型和三平面Transformer,实现快速且高质量的3D重建。
  3. 应用:适用于增强现实、电影制作、工业设计等多种场景,泛化能力强。

正文(附运行示例)

SPAR3D 是什么

stable-point-aware-3d

SPAR3D 是由 Stability AI 和伊利诺伊大学香槟分校联合推出的先进单图生成3D模型方法。它能够从单张图像中高效重建出高质量的3D对象,结合了回归模型和生成模型的优势,既能准确重建图像中的可见表面,又能合理生成被遮挡部分的几何和纹理细节。

SPAR3D 采用两阶段设计,第一阶段使用点扩散模型生成稀疏的3D点云,第二阶段结合采样的点云和输入图像生成高度详细的网格。该方法在多个数据集上表现出色,推理速度快,支持用户对生成网格的交互式编辑,为单视图3D重建任务提供了一种实用且高效的解决方案。

SPAR3D 的主要功能

  • 单视图3D重建:从单张2D图像中重建出高质量的3D网格模型,适用于增强现实、电影制作、制造业等需要3D建模的场景。
  • 快速推理:具有高效的推理速度,每个物体的重建时间仅需0.7秒,适合实时应用需求。
  • 支持用户编辑:生成的3D网格支持交互式编辑,用户基于修改点云调整未见表面的细节,如添加物体部件或改善局部细节,满足个性化需求。
  • 泛化能力强:不仅在标准数据集上表现优异,多图像和AI生成图像上实现准确的几何结构重建和良好的纹理效果,具有强大的泛化性能。

SPAR3D 的技术原理

  • 两阶段设计
    • 点采样阶段:用轻量级的点扩散模型生成稀疏的3D点云。模型基于DDPM框架,用前向过程向原始点云添加噪声,再用后向过程中的去噪器学习去除噪声,生成包含XYZ和RGB信息的点云。
    • 网格化阶段:将采样的点云和输入图像作为条件,用大型三平面Transformer生成高分辨率的三平面特征,用于估计物体的几何、纹理、光照以及材质属性。
  • 点云作为中间表示:点云作为连接两个阶段的桥梁,为网格化阶段提供必要的几何和颜色信息,支持用户在点云层面上进行编辑,增强模型的灵活性和可交互性。
  • 概率建模与逆渲染:在点采样阶段,基于概率建模处理单视图3D重建中的不确定性问题,生成合理的点云分布。在网格化阶段,进行逆渲染,将点云和图像信息融合,估计出物体的详细几何结构和材质属性。

如何运行 SPAR3D

1. 安装依赖

确保你的环境满足以下条件:

  • Python >= 3.8
  • 可选:CUDA
  • 对于 Windows(实验性支持):Visual Studio 2022

安装 PyTorch 和其他依赖:

pip install -U setuptools==69.5.1
pip install wheel
pip install -r requirements.txt
2. 请求访问并登录
  1. 登录 Hugging Face 并请求访问 这里
  2. 创建一个具有读取权限的访问令牌 这里
  3. 在环境中运行 huggingface-cli login 并输入令牌。
3. 运行推理
python run.py demo_files/examples/fish.png --output-dir output/

这将把重建的3D模型保存为 GLB 文件到 output/ 目录中。

4. 本地 Gradio 应用
python gradio_app.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值