通义万相2.1:VBench榜单荣登第一!阿里通义万相最新视频生成模型,支持生成1080P长视频

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能强大:支持1080P无限长视频生成,具备复杂动作展现、物理规律还原等功能。
  2. 技术先进:基于VAE和DiT架构,增强时空上下文建模能力,支持高效编解码。
  3. 应用广泛:适用于影视制作、广告视频、教学辅助、文化创作等多个领域。

正文(附运行示例)

万相2.1 是什么

autotrain-advanced

万相2.1是阿里推出的通义万相升级版本,基于自研的高效VAE和DiT架构,增强时空上下文建模能力,支持无限长1080P视频的高效编解码。首次实现中文文字视频生成功能,并在VBench榜单上荣登第一。

万相2.1能够稳定展现复杂人物运动,逼真还原现实物理规律,一键生成中英文视频特效,具备强大的影视质感与艺术风格转换能力。此外,它还支持文生组图,采用IC-LoRA图像生成训练方法,增强文本到图像的上下文能力,轻松实现关联图像间的组合生成。

万相2.1 的主要功能

  • 复杂动作展现:稳定展现各种复杂的人物肢体运动,如旋转、跳跃、转身、翻滚等,及镜头的移动,让视频内容更加生动和真实。
  • 物理规律还原:逼真还原真实世界的物理规律,如碰撞、反弹、切割、挤压等。比如生成雨滴落在伞上溅起水花的场景,让视频更具真实感。
  • 中英文视频特效生成:提供多种视频特效选项,如过渡、粒子效果、模拟等,能一键生成中英文视频特效,增强视频的视觉表现力。
  • 艺术风格转换:具备强大的艺术风格表现力,能一键转换视频的影视质感与艺术风格,如电影色调、印象笔触、抽象表现等,生成各种风格的视频。
  • 图生成:支持分镜效果还原、四格漫画创作、创意头像定制等功能,满足用户的不同需求。

万相2.1 的技术原理

  • VAE架构:变分自编码器(VAE)是生成模型,用编码器将输入数据映射到一个潜在空间,再用解码器将潜在空间的表示映射回数据空间,实现数据的生成和重建。
  • DiT架构:DiT(Diffusion in Time)架构是基于扩散模型的生成模型,在时间维度上逐步引入噪声,逐步去除噪声生成数据。DiT能有效地捕捉视频的时空结构,支持高效编解码和生成高质量的视频。
  • IC-LoRA:IC-LoRA是一种图像生成训练方法,基于结合图像内容和文本描述,增强文本到图像的上下文能力,让生成的图像更加符合用户的文本描述和期望。
  • 上下文建模:基于增强时空上下文建模能力,更好地理解和生成具有连贯性和一致性的视频内容,让视频中的动作、场景和风格等元素更加自然和协调。

如何运行 万相2.1

1. 访问官网

首先,访问通义万相AI视频官网,开启视频创作。

2. 输入提示词

根据需求输入提示词,例如:

  • 文字特效:以红色新年宣纸为背景,出现一滴水墨,晕染墨汁缓缓晕染开来。
  • 运动:一辆汽车在被雪覆盖的公路上高速飞驰。
3. 生成视频

点击生成按钮,万相2.1将根据提示词生成相应的视频内容。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### 阿里通义2.1 版本特性 阿里云于2025年225日深夜宣布开源视频生成模型通义2.1,此版本提供了两个主要参数规模的选择:文生视频-1.3B和文生视频-14B。这两个版本旨在满足不同的应用场景和技术需求[^1]。 #### 文生视频-1.3B 和 文生视频-14B 的特点 - **文生视频-1.3B**:适合资源有限但希望尝试高质量视频生成的个人开发者或小型团队。 - **文生视频-14B**:针对更复杂、更高精度的任务设计,适用于专业级应用开发以及研究机构。 ### 使用说明 为了方便全球范围内的开发者获取并利用这些先进的技术成果,官方已开放多个平台供下载: - GitHub - Hugging Face - 魔搭社区 用户可以根据自己的偏好选择合适的渠道来访问源码及关文档资料。 对于想要深入了解如何操作该工具的人来说,建议前往[通义官方网站](https://wanxiang.aliyun.com/)进行注册申请账号,并查阅详细的API接口指南和其他支持材料[^2]。 ### 更新内容 此次发布的通义2.1不仅实现了完全开源共享,在性能优化方面也取得了显著进步,具体表现在以下几个方面: - 提升了图像到视频转换的质量; - 增强了自然语言处理能力,使得描述文字能够更加精准地映射成视觉效果; - 改进了多模态融合机制,从而更好地理解输入数据之间的关联性; 此外,还修复了一些之前存在的Bug,并增加了新的功能模块以扩展系统的适用性和灵活性。 ```python import torch from transformers import AutoModelForVideoGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("path_to_model") # 替换为实际路径 model = AutoModelForVideoGeneration.from_pretrained("path_to_model") text_input = tokenizer("A beautiful sunset over the ocean", return_tensors="pt") video_output = model.generate(**text_input) print(video_output.shape) # 输出生成视频张量大小 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值