LangBot:无缝集成到QQ、微信等消息平台的AI聊天机器人平台

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 LangBot 这个开源的多模态即时聊天机器人平台。

🚀 快速阅读

LangBot 是一个支持多平台和多种大语言模型的开源即时聊天机器人平台。

  1. 主要功能:支持文本、语音、图片等多种输入输出形式,内置访问控制、限速和敏感词过滤机制,确保稳定运行和内容安全。
  2. 技术原理:基于事件驱动架构,集成即时通信平台的 API 和多种大语言模型,支持插件扩展和 Web 管理面板。

LangBot 是什么

LangBot

LangBot 是一个开源的即时聊天机器人平台,支持多平台(如 QQ、微信、飞书、Discord 等)和多种大语言模型(如 ChatGPT、DeepSeek、Gemini 等)。它具备多模态交互能力,支持文本、语音、图片等多种输入输出形式,能够进行多轮对话和工具调用。通过内置的访问控制、限速和敏感词过滤机制,LangBot 确保了稳定运行和内容安全。此外,LangBot 提供丰富的插件扩展功能和 Web 管理面板,方便用户根据需求定制和管理机器人。

LangBot 的主要功能

  • 多平台支持:无缝集成到多种主流即时通信平台,如 QQ、微信(包括企业微信和个人微信)、飞书、Discord 等。
  • 多模态交互:支持文本、语音、图片等多种输入输出形式,处理复杂的交互任务,如图片识别和语音识别,为用户提供更丰富的互动体验。
  • 多模型适配:支持接入多种主流的大语言模型(LLM),如 OpenAI 的 ChatGPT、DeepSeek、Claude、Gemini、Ollama 等,用户可以根据需求选择合适的模型进行对话任务。
  • 高稳定性:内置访问控制、限速和敏感词过滤等机制,确保机器人稳定运行,避免滥用和不当内容传播。
  • 插件扩展:支持强大的插件系统,用户可以根据业务需求定制功能模块,拓展机器人的能力。
  • Web 管理面板:提供直观的 Web 管理面板,方便用户配置和管理机器人实例,无需频繁编辑配置文件,即可快速调试和优化机器人。

LangBot 的技术原理

  • 即时通信平台的 API 集成:基于调用各个即时通信平台提供的 API 接口,实现与用户的交互。
  • 大语言模型(LLM)的集成:LangBot 支持多种主流的大语言模型,模型提供强大的自然语言处理能力。LangBot 将用户的输入发送到选定的 LLM,将模型生成的响应返回给用户。
  • 事件驱动和插件机制:基于事件驱动架构,根据不同的事件(如消息接收、用户操作等)触发相应的处理逻辑。LangBot 支持插件扩展,开发者可以基于编写插件扩展机器人的功能,例如添加数据分析、内容创作辅助等功能。
  • 安全和管理机制:内置访问控制、限速和敏感词过滤等安全机制,确保机器人的稳定运行和内容安全。访问控制机制限制只有授权的用户才能与机器人交互;限速机制防止过多的请求导致系统过载;敏感词过滤机制避免不当内容的传播。

如何手动部署 LangBot

  • 请使用 Python 3.10.1(不包含 3.10.0)及以上版本,推荐 3.10.14 版本。如果没有 Python,请自行安装。

安装主程序

1. 下载并解压最新版本的压缩包

前往 LangBot 的 Release 页面 下载最新版本的压缩包,推荐下载 langbot-xxx-all.zip(请勿下载 Source Code,因为其中不包含 WebUI)。解压后,在解压目录打开命令行(终端)。

LangBot-release

2. 克隆最新代码(可选)

如果您希望使用最新的代码(可能包含不稳定的代码),可以使用以下命令克隆仓库并构建前端(需要 NodeJS >= 22):

git clone https://github.com/RockChinQ/LangBot
cd LangBot
cd web
npm install && npm run build
cd ..
3. 创建虚拟环境(建议)

在一些使用系统包管理器管理 Python 依赖的 Linux 系统上,可能会出现依赖冲突,因此建议使用 venv 创建虚拟环境。Windows 用户可以跳过此步骤。

python -m venv venv
source venv/bin/activate
4. 安装依赖

安装项目所需的依赖项,可以使用默认的 PyPI 源或清华源以加快下载速度。

使用默认源:

pip install -r requirements.txt

使用清华源:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
5. 生成配置文件

首次运行主程序时,系统会自动生成所需的配置文件。运行以下命令:

python main.py

程序会输出类似以下信息,提示生成了配置文件:

 _                   ___      _   
| |   __ _ _ _  __ _| _ ) ___| |_ 
| |__/ _` | ' \/ _` | _ \/ _ \  _|
|____\__,_|_||_\__, |___/\___/\__|
               |___/              

⭐️开源地址: https://github.com/RockChinQ/LangBot
📖文档地址: https://docs.langbot.app

以下文件不存在,已自动生成,请按需修改配置文件后重启:
- plugins/__init__.py
- plugins/plugins.json
- data/config/command.json
- data/config/pipeline.json
- data/config/platform.json
- data/config/provider.json
- data/config/system.json
- data/config/sensitive-words.json
- data/scenario/default.json
6. 修改配置文件并重新运行

在完成消息平台的部署并根据需要修改配置文件后,再次运行主程序:

python main.py

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### 如何在微信平台上部署 DeepSeek #### 准备工作 为了顺利将 DeepSeek 部署至微信平台,需完成如下准备工作: - **安装 ollama 并部署 deepseek**:确保本地已成功安装 ollama 及其上的 deepseek 模型。这一步骤至关重要,因为后续操作依赖于该模型的良好运行状态[^1]。 - **准备合适的微信客户端版本**:由于某些微信机器人的兼容性问题,建议使用特定版本的微信客户端(如3.9.10.27),以避免因版本过高而导致的功能失效或不兼容情况发生。 #### 使用 NGCBot 或 LangBot 进行集成 两种主要方式可用于实现 DeepSeek 与微信消息交互——NGCBot 和 LangBot。 ##### 方案一:利用 NGCBot 构建基于 Hook 的微信机器人 - 下载并配置 NGCBot,这款工具能够帮助快速搭建起支持多种 AI 接口(包括 DeepSeek)的微信聊天机器人服务。 - 注意选择适合 NGCBot 运作的较低版次微信程序,以免遇到版本冲突带来的麻烦。 ##### 方案二:借助企业微信中的自定义应用程序 对于拥有企业微信的企业用户来说,可以直接在其内部创建一个名为 “deepseek”的应用实例。通过企微管理后台配合开源框架 LangBot 来简化这一过程,并允许员工更便捷地测试和运用 DeepSeek 功能[^2]。 #### 技术细节说明 采用 Python 编程语言作为开发环境的一部分,在计算机端设置好 PC 微信后,可以通过 `wxauto` 库自动化处理来自微信的信息接收与发送任务。具体做法涉及安装相应库文件以及编写简单的脚本来调用微信 API 完成消息传递逻辑[^3]。 ```bash pip install wxauto==3.9.11.17.5 ``` ```python from wxauto import WxAuto def send_message(to_user, message_content): wx = WxAuto() user = wx.GetSessionList().find(to_user) if not user: print(f"User {to_user} not found.") return wx.SendMsg(user, message_content) if __name__ == "__main__": send_message("friend_name", "Hello from DeepSeek!") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值