Step-Audio:开源语音交互新标杆!这个国产AI能说方言会rap,1个模型搞定ASR+TTS+角色扮演

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎙️ “智能家居集体「觉醒」!开源语音模型听懂你的川普怒吼,方言骂人都能温柔回应”

大家好,我是蚝油菜花。你是否经历过——

  • 👉 用普通话叫智能音箱关灯,它反问“您是要开灯吗?”
  • 👉 教长辈说标准指令,不如直接替他们按开关
  • 👉 客服机器人永远用播音腔说“理解您的心情”…

今天介绍的 Step-Audio ,正在终结这些智障交互!这个由阶跃星辰开源的130B参数怪兽:

  • ✅ 听得懂20+方言:四川话吐槽空调太热?马上调低3℃
  • ✅ 情感即时映射:愤怒语气触发应急模式,悲伤时自动切换温柔声线
  • ✅ 端到端实时交互:1秒内完成“听-想-说”全流程,延迟比眨眼还快

从智能家居到银发陪护,连方言短剧配音都在用它——你的设备准备好拥有「灵魂」了吗?

🚀 快速阅读

Step-Audio 是一款支持多语言、方言和情感表达的语音交互模型,能够实现高质量的语音识别、对话和合成。

  1. 核心功能:统一的语音理解与生成框架,支持多语言、方言和情感控制。
  2. 技术原理:基于 130B 参数的多模态大模型,结合双码本语音分词器和混合语音合成器,实现高效的语音处理和实时推理。

Step-Audio 是什么

Step-Audio-architecture

Step-Audio 是由阶跃星辰团队推出的首个产品级开源语音交互模型,旨在为用户提供高质量的语音交互体验。该模型基于 130B 参数的多模态大模型,能够根据不同的场景需求生成带有特定情感、方言、语种和个性化风格的语音表达。Step-Audio 不仅支持语音识别、对话生成,还具备强大的语音合成能力,能够在智能家居、智能客服、教育、娱乐等多个领域发挥作用。

Step-Audio 的核心优势在于其高效的数据生成引擎、精细的情感和方言控制能力,以及增强的工具调用和角色扮演功能。这些特性使得 Step-Audio 在复杂任务处理中表现出色,能够为用户提供更加自然、流畅的语音交互体验。

Step-Audio 的主要功能

  • 语音理解与生成的统一:同时处理语音识别(ASR)、语义理解、对话生成和语音合成(TTS),实现端到端的语音交互。
  • 多语言和方言支持:支持多种语言和方言(如粤语、四川话等),满足不同地区用户的需求。
  • 情感和风格控制:支持生成带有特定情感(如愤怒、喜悦、悲伤)和风格(如说唱、演唱)的语音。
  • 工具调用与角色扮演:支持实时工具调用(如查询天气、获取信息)和角色扮演,提升交互的灵活性和智能化水平。
  • 高质量语音合成:基于开源的 Step-Audio-TTS-3B 模型,提供自然流畅的语音输出,支持音色克隆和个性化语音生成。

Step-Audio 的技术原理

  • 双码本语音分词器:使用语言码本(16.7Hz,1024 码本)和语义码本(25Hz,4096 码本)对语音进行分词,基于 2:3 的时间交错方式整合语音特征,提升语音的语义和声学表示能力。
  • 130B 参数的多模态大模型:基于 Step-1 预训练文本模型,通过音频上下文的持续预训练和后训练,增强模型对语音和文本的理解与生成能力,支持语音和文本的双向交互。
  • 混合语音合成器:结合流匹配和神经声码器技术,优化实时波形生成,支持高质量的语音输出,同时保留语音的情感和风格特征。
  • 实时推理与低延迟交互:采用推测性响应生成机制,用户暂停时提前生成可能的回复,减少交互延迟。基于语音活动检测(VAD)和流式音频分词器,实时处理输入语音,提升交互的流畅性。
  • 强化学习与指令跟随:使用人类反馈的强化学习(RLHF)优化模型的对话能力,确保生成的语音更符合人类的指令和语义逻辑。基于指令标签和多轮对话训练,提升模型在复杂场景下的表现。

如何运行 Step-Audio

1. 环境准备

Step-Audio 需要在以下环境中运行:

ModelSetting (sample frequency)GPU Minimum Memory
Step-Audio-Tokenizer41.6Hz1.5GB
Step-Audio-Chat41.6Hz265GB
Step-Audio-TTS-3B41.6Hz8GB
  • 硬件要求:建议使用 NVIDIA GPU,并安装 CUDA 支持。推荐使用 4xA800/H800 GPU,每块 GPU 至少 80GB 内存。
  • 操作系统:已测试的操作系统为 Linux。
2. 安装依赖
git clone https://github.com/stepfun-ai/Step-Audio.git
conda create -n stepaudio python=3.10
conda activate stepaudio

cd Step-Audio
pip install -r requirements.txt

git lfs install
git clone https://huggingface.co/stepfun-ai/Step-Audio-Tokenizer
git clone https://huggingface.co/stepfun-ai/Step-Audio-Chat
git clone https://huggingface.co/stepfun-ai/Step-Audio-TTS-3B

下载完成后,目录结构应如下所示:

where_you_download_dir
├── Step-Audio-Tokenizer
├── Step-Audio-Chat
├── Step-Audio-TTS-3B
3. 推理脚本
  • 离线推理:使用 offline_inference.py 进行端到端的音频或文本输入和输出推理。
python offline_inference.py --model-path where_you_download_dir
  • TTS 推理:使用 tts_inference.py 进行文本到语音的合成,支持默认发音人或克隆新的发音人。
python tts_inference.py --model-path where_you_download_dir --output-path where_you_save_audio_dir --synthesis-type use_tts_or_clone

对于克隆模式,需要提供一个发音人信息字典,格式如下:

{
    "speaker": "speaker id",
    "prompt_text": "content of prompt wav",
    "wav_path": "prompt wav path"
}
  • 启动 Web Demo:启动本地服务器进行在线推理。
python app.py --model-path where_you_download_dir

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

### 安装 Step-Audio 的方法 对于特定于 Step-Audio 的安装,在提供的参考资料中并没有直接提及此软件包的具体安装指南。然而,可以推测 Step-Audio 可能是指 WebRTC 音频处理库或者是与 ALSA 或 PulseAudio 相关的一个组件,因为这些是在 Linux 平台上常见的音频处理技术。 如果假设 Step-Audio 是指 WebRTC 音频处理库,则可以从源码编译并安装该库: #### 编译和安装 WebRTC 音频处理库 下载 WebRTC 音频处理库的压缩包,并解压到本地目录[^1]: ```bash wget http://freedesktop.org/software/pulseaudio/webrtc-audio-processing/webrtc-audio-processing-0.3.1.tar.xz tar xf webrtc-audio-processing-0.3.1.tar.xz cd webrtc-audio-processing-0.3.1/ ``` 准备构建环境以及执行实际的构建过程: ```bash mkdir build && cd build cmake .. make -j$(nproc) sudo make install ``` 上述命令序列完成了从获取资源到最终安装的过程。需要注意的是,具体的安装路径和其他选项可能依据个人需求有所不同,因此建议查看官方文档来获得最准确的信息。 考虑到另一种可能性即 Step-Audio 为自定义术语或较少见的应用程序,那么应当寻找其官方网站或其他权威来源以确认确切含义及其对应的安装指导明。 另外,如果是涉及到更底层如 ALSA 设备驱动层面的操作,通常不需要单独安装所谓的 "Step-Audio";相反,这更多是一个抽象的概念或是开发过程中遵循的一系列步骤[^3]。 由于缺乏关于 Step-Audio 明确描述的确切资料,以上解释基于现有信息进行了合理的推断。为了得到更加针对性的帮助,请提供更多的背景信息以便给出更为精确的回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值