根轨迹设计控制器
闭环极点
H ( s ) H(s) H(s)的开环根轨迹图就是 K K K从0到 ∞ \infty ∞时,所有闭环极点可能的位置(即轨迹)。
如何画根轨迹图
闭环传递函数
Y
(
s
)
R
(
s
)
=
K
H
(
s
)
1
+
K
H
(
s
)
\frac{Y(s)}{R(s)}=\frac{KH(s)}{1+KH(s)}
R(s)Y(s)=1+KH(s)KH(s)
求极点
1
+
K
H
(
s
)
=
0
1 +KH(s) = 0
1+KH(s)=0
若
H
(
s
)
=
b
(
s
)
/
a
(
s
)
H(s) = b(s)/a(s)
H(s)=b(s)/a(s)
a
(
s
)
K
+
b
(
s
)
=
0
\frac{a(s)}{K}+b(s) = 0
Ka(s)+b(s)=0
n n n是 a ( s ) a(s) a(s)的阶数, m m m是 b ( s ) b(s) b(s)的阶数。
K K K为正值,K->0, a ( s ) = 0 a(s)=0 a(s)=0的解为闭环系统的极点(即 H ( s ) H(s) H(s)的极点),K-> ∞ \infty ∞, b ( s ) = 0 b(s) = 0 b(s)=0的解为闭环系统极点(即 H ( s ) H(s) H(s)的零点)。
无论怎么选择 K K K,闭环系统都有 n n n极点,其中 n n n是开环传递函数 H ( s ) H(s) H(s)的极点数。 然后根轨迹具有 n n n分支,每个分支从极点开始并接近 H ( s ) H(s) H(s)的零点。如果 H ( s ) H(s) H(s)极点比零点多(这是常有的情况), m < n m <n m<n ,则 H ( s ) H(s) H(s)有在无穷远处的零点。在这种情况下, H ( s ) H(s) H(s)的极限 s → ∞ s\rightarrow\infty s→∞ 为零。无穷远处的零点数是 n − m n-m n−m,即开环极点的数减去开环零点数,也是根轨迹的分支趋向“无穷大”(渐近线)的数量。
由于根轨迹由所有可能的闭环极点的位置组成,因此根轨迹有助于我们选择增益值 K K K以实现我们期望的性能类型。如果任何选定的极点位于右半复平面上,则闭环系统将不稳定。最接近虚轴的极点对闭环响应影响最大,因此即使系统有三极或四极,它仍然可以表现得类似于二阶或一阶系统,具体取决于主导极点的位置。
绘制根轨迹
考虑一个具有传递函数的开环系统
H
(
s
)
=
Y
(
s
)
U
(
s
)
=
s
+
7
s
(
S
+
5
)
(
s
+
15
)
(
s
+
20
)
H(s)=\frac{Y(s)}{U(s)}=\frac{s+7}{s(S+5)(s+15)(s+20)}
H(s)=U(s)Y(s)=s(S+5)(s+15)(s+20)s+7
如何使用root-locus方法为系统设计反馈控制器?假设我们的设计标准是5%的超调和1秒的上升时间。
s = tf('s');
sys =(s + 7)/(s *(s + 5)*(s + 15)*(s + 20));
rlocus(sys)
axis([ -22 3 -15 15])
根轨迹中选择K值
使用命令sgrid(zeta,wn)绘制恒定阻尼比和固有频率的线。它的两个参数是阻尼比( ζ \zeta ζ )和固有频率( ω n \omega_n ωn)[如果你想看一系列可接受的值,它们可能是矢量]。在我们的问题中,我们需要小于5%的过冲(这意味着阻尼比 ζ \zeta ζ大于0.7)和1秒的上升时间(这意味着固有频率 ω n \omega_n ωn大于1.8 )。
所以,
ζ
\zeta
ζ大于0.7。
绘制固定阻尼比和固有频率的线
zeta = 0.7;
wn = 1.8;
sgrid(zeta,wn)
从上图可以看出,根轨迹的一部分在期望区域内。因此,在这种情况下,我们只需要一个比例控制器来将极点移动到期望区域。使用rlocfind选择期望的极点。
[k,poles] = rlocfind(sys)
闭环响应
sys_cl =feedback(k * sys,1);
step(sys_cl);