Matalb&Simulink Control Tutorials笔记4-根轨迹设计控制器

根轨迹设计控制器

闭环极点

H ( s ) H(s) H(s)开环根轨迹图就是 K K K0到 ∞ \infty 时,所有闭环极点可能的位置(即轨迹)。

如何画根轨迹图
在这里插入图片描述
闭环传递函数
Y ( s ) R ( s ) = K H ( s ) 1 + K H ( s ) \frac{Y(s)}{R(s)}=\frac{KH(s)}{1+KH(s)} R(s)Y(s)=1+KH(s)KH(s)
求极点
1 + K H ( s ) = 0 1 +KH(s) = 0 1+KH(s)=0
H ( s ) = b ( s ) / a ( s ) H(s) = b(s)/a(s) H(s)=b(s)/a(s)
a ( s ) K + b ( s ) = 0 \frac{a(s)}{K}+b(s) = 0 Ka(s)+b(s)=0

n n n a ( s ) a(s) a(s)的阶数, m m m b ( s ) b(s) b(s)的阶数。

K K K为正值,K->0, a ( s ) = 0 a(s)=0 a(s)=0的解为闭环系统的极点(即 H ( s ) H(s) H(s)的极点),K-> ∞ \infty b ( s ) = 0 b(s) = 0 b(s)=0的解为闭环系统极点(即 H ( s ) H(s) H(s)的零点)。

无论怎么选择 K K K,闭环系统都有 n n n极点,其中 n n n是开环传递函数 H ( s ) H(s) H(s)的极点数。 然后根轨迹具有 n n n分支,每个分支从极点开始并接近 H ( s ) H(s) H(s)的零点。如果 H ( s ) H(s) H(s)极点比零点多(这是常有的情况), m &lt; n m &lt;n m<n ,则 H ( s ) H(s) H(s)有在无穷远处的零点。在这种情况下, H ( s ) H(s) H(s)的极限 s → ∞ s\rightarrow\infty s 为零。无穷远处的零点数是 n − m n-m nm,即开环极点的数减去开环零点数,也是根轨迹的分支趋向“无穷大”(渐近线)的数量。

由于根轨迹由所有可能的闭环极点的位置组成,因此根轨迹有助于我们选择增益值 K K K以实现我们期望的性能类型。如果任何选定的极点位于右半复平面上,则闭环系统将不稳定。最接近虚轴的极点对闭环响应影响最大,因此即使系统有三极或四极,它仍然可以表现得类似于二阶或一阶系统,具体取决于主导极点的位置。

绘制根轨迹

考虑一个具有传递函数的开环系统
H ( s ) = Y ( s ) U ( s ) = s + 7 s ( S + 5 ) ( s + 15 ) ( s + 20 ) H(s)=\frac{Y(s)}{U(s)}=\frac{s+7}{s(S+5)(s+15)(s+20)} H(s)=U(s)Y(s)=s(S+5)(s+15)(s+20)s+7
如何使用root-locus方法为系统设计反馈控制器?假设我们的设计标准是5%的超调和1秒的上升时间。

s = tf('s'); 
sys =(s + 7)/(s *(s + 5)*(s + 15)*(s + 20)); 
rlocus(sys)
axis([ -22 3 -15 15])

在这里插入图片描述

根轨迹中选择K值

使用命令sgrid(zeta,wn)绘制恒定阻尼比和固有频率的线。它的两个参数是阻尼比( ζ \zeta ζ )和固有频率( ω n \omega_n ωn)[如果你想看一系列可接受的值,它们可能是矢量]。在我们的问题中,我们需要小于5%的过冲(这意味着阻尼比 ζ \zeta ζ大于0.7)和1秒的上升时间(这意味着固有频率 ω n \omega_n ωn大于1.8 )。

在这里插入图片描述
在这里插入图片描述所以, ζ \zeta ζ大于0.7。

绘制固定阻尼比和固有频率的线

zeta = 0.7;
wn = 1.8;
sgrid(zeta,wn)

在这里插入图片描述

从上图可以看出,根轨迹的一部分在期望区域内。因此,在这种情况下,我们只需要一个比例控制器来将极点移动到期望区域。使用rlocfind选择期望的极点。

[k,poles] = rlocfind(sys)

在这里插入图片描述

闭环响应

sys_cl =feedback(k * sys,1);

step(sys_cl);

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值