1、What & Why PCA(主成分分析)
PCA,Principal components analyses,主成分分析。广泛应用于降维,有损数据压缩,特征提取和数据可视化。也被称为Karhunen-Loeve变换
从降维的方法角度来看,有两种PCA的定义方式,方差最大和损失最小两种方式。这里需要有一个直观的理解:什么是变换(线性代数基础)。
但是总的来说,PCA的核心目的是寻找一个方向(找到这个方向意味着二维中的点可以被压缩到一条直线上,即降维),这个方向可以:
- 最大化正交投影后数据的方差(让数据在经过变换后更加分散)

紫色的直线 u1即是关于 x1,x2二维的正交投影的对应一维表示
PCA定义为使绿色点集的方差最小(方差是尽量让绿色所有点都聚在一坨)其中的蓝线是原始数据集(红点)到低纬度的距离,这可以引出第二种定义方
本文深入探讨PCA(主成分分析)、SVD(奇异值分解)及其应用场景,解释了PCA的降维原理、SVD的矩阵分解过程,并介绍了PCA与SVD的关系。此外,文章指出SVD在推荐系统和数据压缩中的应用,以及PCA如何通过特征向量寻找最大方差方向来实现数据压缩。线性判别分析(LDA)的内容未在此详述。
订阅专栏 解锁全文
1519





