概率图学习——Parameter Learning 参数学习

概率图分为三大部分:

  • Representation P <=>{P,G}

    • parent→child structure(BN) & clique(MN)
    • Gaussian model & exponential families
  • Inference P(Y|E=e, θ)

    • Particle-based inference
    • Inference as optimization
  • Learning

    • max ⁡ θ P ( x [ 1 ] , x [ 2 ] , . . . , x [ M ] ∣ θ ) \underset{\theta}{\operatorname{max}} P(x[1], x[2], ..., x[M]|\theta) θmaxP(x[1],x[2],...,x[M]θ)
    • P(θ|x[1], x[2], …, x[M])

Learning Basics

Learning:从观测数据中构建模型。
根据不同的准则,定义合适的 loss 或者 likelihood function
准则包括:

  1. minimum error,
  2. probability (maximum likelihood, maximum a posterior )
  3. maximum margin
  4. compressive sensing

在概率框架下的学习:

  1. parameter learning:{x[m]}m=1-M|G→P(θ|D)
  2. Structure learning:{x[m]}m=1-M→P(G, θ|D)
  • Generative Models: 学习 joint probability P(X=x, Y)
  • Discriminative model: 学习conditional probability P(Y|X=x)

避免 Overfitting

  1. 如果模型复杂度比训练数据更大,能得到非常“好”的学习,0 empirical risk,但是在 测试集表现会很差
  2. 增加泛化,需要去惩罚模型的复杂度,分离训练和测试数据

在理论层面:模型的复杂度需要适应数据的复杂度,loss function 中的正则项
在经验层面:cross-validation(LOOCV/N-fold CV),0.632 boostraping(1-e-1)
什么是0.632 bootstrapping?
从 M 个样本中有放回地抽取 M 次,那么这些数据大概率会有0.632是不重复的数据,这些数据作为 training 集,剩下没有被抽到的作为 test 集。最后 performance:0.368PerformanceTrain + 0.632PerformanceTest

判断是否 overfitting: 在 test 集的 performance 是否严重低于training 集的 performance

参数估计
如果一组数据的分布参数不知道,那么这组数据的联合分布不会等于每个数据的概率乘积。假设知道了分布参数,那所有的 samples 是独立同分布的,即 i.i.d
在这里插入图片描述

最大似然参数估计 Maximum Likelihood Parameter Estimation(MLE)

首先,什么是 likelihood?
likelihood 是给定分布参数的 probability 或者是 confidence
而 log likelihood 更经常被使用,为了更好的计算 l o g P ( D ∣ θ ) = ∑ i l o g ϕ i ( x [ i ] ; θ ) log P(D|\theta)=\sum_i log \phi_i(x[i];\theta) logP(Dθ)=ilogϕi(x[i];θ)
MLE:找到是的 likelihood 最大的参数赋值θ,参数估计的一种方法,

Bayesian Parameter Estimation

MAP Parameter Estimation

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值